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AFIT/GEM/ENV/08-M08 

Abstract 

 

Energy consumption is a national concern, as evidenced by federal laws aimed 

toward facility energy conservation measures for federal organizations.  Factors, 

primarily weather variables, that significantly impact energy consumption must be 

addressed and understood to align resources and programs to meet federal energy 

reduction goals.  An energy model was created and tested to produce an appropriate 

forecasting tool for energy consumption.  Energy demand at Air Force installations 

primarily depends on climatic conditions, with a small portion attributed to a base load of 

non-climatic conditions, such as interior lighting and appliance loads.  By gathering all 

energy consumption and meteorological data covering 22 years for 74 Air Force 

installations throughout the world, an overarching predictive model was created.  

Specifically, heating degree-days, cooling degree-days, wind speed, and relative humidity 

data were collected and analyzed to determine the influence on energy consumption.  The 

model showed a predictive value with adjusted R2 above 81%.  Additionally, trend 

analysis conducted over the 22-year period provided insight into the significant use of 

heating load requirements during the winter months as compared to cooling load 

requirements in summer months.  This information should encourage energy policy 

makers to allocate more resources into heating system requirements than into cooling 

requirements, taking advantage of major opportunities to reduce energy consumption. 
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IMPACT OF WEATHER VARIATIONS ON ENERGY CONSUMPTION 
EFFORTS AT U.S. AIR FORCE BASES 

 
 

Chapter I.  Introduction 
 
 
Energy consumption has been a national concern in the United States (U.S.) since 

the early 1970’s.  This chapter begins with a background investigation of the U.S. energy 

use, U.S. energy policy, energy reporting mechanisms, and weather impacts on energy 

consumption.  Then, the problem statement, research objectives/questions, methodology, 

assumptions, and the significance of this study are addressed.  The chapter concludes 

with a brief explanation of the remaining chapters. 

Background 

In 2003, the world consumed 421 quadrillion British Thermal Units (BTUs) of 

energy to support its industrial, commercial, residential, and transportation sectors.  By 

the year 2030, this number is expected to increase to approximately 722 quadrillion 

BTUs, equating to an average increase of two percent per year (DOE, 2006c).  As the 

world population continues to grow and non-Organization for Economic Cooperation and 

Development (OECD) nations become more developed, the demand for energy from all 

economic sectors will continue to escalate.  Since a majority of current energy production 

is derived from the consumption of non-renewable fossil fuels (primarily oil, natural gas, 

and coal), the continual increase in energy demand is rapidly depleting non-renewable 

energy sources (DOE, 2006c).  Consequently, government leaders in the United States 
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are extremely concerned about the United States’ reliance on fossil fuels for energy 

production and its potential impact on national and energy security (Bush, 2001).  A 

review of U.S. energy use, past and present U.S. energy policy, federal energy reporting 

mechanisms, and weather impacts on energy consumption will be discussed in this 

section. 

 

United States Energy Use 

In 2006, the United States consumed approximately 24 percent of the world’s 

fossil fuel resources, a decrease from 27 percent in 1980 (DOE, 2006c; DOE, 2006a).  

This decrease is attributed to the increase in overall energy demand in non-OECD nations 

such as China and India.  Although the United States’ percentage of the world’s energy 

demand decreased, Figure 1-1 depicts the growth in energy consumption compared to 

production in the United States.  Energy consumption is expected to continue to outpace 

energy production, forcing the United States to rely more heavily on imports to meet 

requirements (Bush, 2001). 
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Figure 1-1.  Growth in United States Energy Consumption (DOE, 2006a) 
 

The following represents a summary of pertinent information contained in the 

Electric Power Annual 2006 report which indicates that electricity generation represents a 

significant portion of total energy consumption (DOE, 2007a).  Electricity is generated 

from various sources:  coal, petroleum, natural gas, nuclear, hydroelectric, other gases, 

and various renewable sources.  However, a predominant amount of electricity is 

generated by coal.  In fact, nearly 91 percent of all coal consumed in the United States in 

2000 was used in the generation of electricity.  In 2005, the proportion of overall coal 

consumed for electricity generation increased to 92 percent.  In comparison to other 

energy sources, 55 percent of the 1,910 billion kilowatt-hours of electricity produced in 

2000 came from coal.  By 2005, the percentage dropped to 52.6 percent, but electrical 

output increased to 1,956 billion kilowatt-hours.  The drop in proportion was due to a 

significant increase in natural gas usage and minor increases in petroleum, nuclear, and 
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renewable energy sources.  Overall electricity generation increased from 3,473 billion 

kilowatt-hours to 3,721 billion kilowatt-hours from 2000 to 2005 (DOE, 2007a). 

Within the United States, the federal government is the single largest energy 

consumer in the nation, using 1,146.9 trillion BTUs of energy in 2005 (DOE, 2006a).  

The Department of Defense (DoD), one of many organizations within the federal 

government, utilized 81 percent of the federal government’s total energy.  Figure 1-2 

displays the federal government energy usage.  For the DoD, energy consumption costs 

for facilities alone exceed $2.5 billion annually (DoD, 2005).  The extensive energy 

demand throughout the United States, more specifically by the federal government, 

stimulated interest and action in energy conservation measures and energy policy 

initiatives (Bush, 2001; DOE, 2006a). 
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Figure 1-2.  Total and U.S. Department of Defense Energy Consumption (DOE, 2006a) 
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United States Energy Policy 

Conserving energy became a major concern in the early 1970s during a 

nationwide energy crisis.  The 1973 oil embargo, a major factor contributing to this 

energy crisis, was the result of several nations in the Organization of the Petroleum 

Exporting Countries (OPEC) halting or reducing oil exports to the United States due to 

the United States’ support of Israel during the Arab-Israeli war.  This embargo produced 

gasoline shortages and significant increases in gasoline prices throughout America.  The 

United States quickly realized the necessity of energy conservation investments to reduce 

the impacts of fossil fuel-driven energy markets on the economy (DOE, 2007b). 

In an effort to ease the energy crisis, President Nixon crafted several energy 

policies aimed at reducing United States reliance on fossil fuels and promoting energy 

conservation initiatives.  To champion the United States energy policies, the Department 

of Energy was created on October 1, 1977, with the charter to “provide the framework for 

a comprehensive and balanced national energy plan by coordinating and administering 

the energy functions of the federal government” (DOE, 2007c).  The Energy Policy and 

Conservation Act of 1975 was the first energy policy created; it directed the President to 

develop standards for energy efficiency and a 10-year plan for energy conservation 

efforts in federal buildings.  Later, the National Energy Conservation Policy Act of 1978 

set forth a more robust national energy policy.  This act stipulated the need for continued 

efforts toward energy efficiency throughout the economy, controls on the growth rate of 

demand for energy, more independence from the world oil market, and reductions in 

demand for non-renewable energy sources through conservation measures.  It also 
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established the first measurable energy consumption reduction goal in federal facilities 

that spanned a 15-year time period (from 1985 to 2000).  This act paved the way for 

future policies and guidelines. 

In addition to the National Energy Conservation Policy Act of 1978, two critical 

documents were created that provided significant support, flexibility, and guidance for 

federal agency compliance:  the Energy Policy Act (EPAct) of 1992 and Executive Order 

12902 of March 1994.  The EPAct of 1992 provided federal organizations the authority 

to engage in energy savings performance contracts (ESPC) to accomplish energy 

conservation.  The implementation of ESPCs shifted the burden of capital investments to 

the contractors who, in turn, benefited from the energy savings created from its 

endeavors.  Federal organizations would then gain the energy savings benefit at the 

conclusion of the contractual obligations of the ESPC.  Executive Order 12902 mandated 

a 30 percent reduction in energy consumption in each federal facility from 1995 to 2005.  

This energy reduction, measured in energy consumption per gross-square-foot, was to be 

compared to a baseline consumption year of 1985.  These policies sought to promote 

efficient use of all fossil fuels and to continue investigating viable renewable energy 

sources. 

In 2001, President Bush (2001) formalized five national goals:  “America must 

modernize conservation, modernize our energy infrastructure, increase energy supplies, 

accelerate the protection and improvement of the environment, and increase our nation’s 

energy security.”  To further improve energy conservation efforts and align policy 

guidance with these five national goals, the EPAct of 1992 and Executive Order 12902 
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were superseded by the Energy Policy Act (EPAct) of 2005 and Executive Order 13123 

of June 1999, respectively.  Amendments to the prior policies included continued 

emphasis on reduction in energy consumption and greenhouse gas emissions and 

increasing usage of alternative energy sources.  Specifically, the EPAct of 2005 extended 

the energy reduction requirement for federal facilities from 2005 to 2105; it also 

mandated a two percent annual reduction in energy use and changed the baseline year 

from 1985 to 2003.  Furthermore, Executive Order 13123 extended the energy 

conservation goals set forth in Executive Order 12902 from 2005 to 2010 and required a 

35 percent reduction by 2010 from the 1985 baseline year.  Executive Order 13123 was 

later superseded by Executive Order 13423 of January 2007, which further emphasized 

energy conservation by increasing the annual energy reduction to three percent through 

2015.  With federal legislative guidance mandating energy conservation, a reporting 

mechanism was needed to capture the attainment of those reduction goals. 

 

Energy Reporting Mechanism  

In February of 1974, the Defense Energy Information System (DEIS) was 

initiated to report energy resource usage in federal facilities.  This automated 

management system monitors all DoD energy utility supplies and consumption data and 

is vital for managing the EPAct and Executive Order energy reduction goals.  The DEIS 

was later renamed the Defense Utility Energy Reporting System (DUERS) (DoD, 1993). 

The DUERS provides valuable information to energy policy makers to assist in 

the development and execution of DoD energy programs.  DUERS data collected by Air 
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Force energy managers is “used by the Air Staff to budget for future energy costs, to 

track energy goal progress, to validate energy efficiency projects, to analyze Air Force 

consumption trends, and most important, to develop long-term policy that ensures 

adequate and deliverable energy resources are available in support of the Air Force 

mission” (Department of the Air Force, 1996, p.1).  The data, gathered since the baseline 

year of Fiscal Year (FY) 1985 from all Air Force installations, is maintained at the Air 

Force Civil Engineer Support Agency (AFCESA).  The data is then presented to the 

Office of the Secretary of Defense annually and used in the assessment of DoD energy 

policy.  To be meaningful though, analysis of this data should include the impact of other 

related factors, with an important factor being weather. 

    

Weather Impacts on Energy Consumption 

Calculating expected energy consumption values is a complex task for individual 

facilities, large regions, and Air Force installations containing a wide variety of facilities.  

Energy consumption is influenced by numerous weather conditions including air 

temperature, relative humidity, and wind speed (Eto, 1988).  The difficulties experienced 

in predicting energy consumption estimates due to these impacts have generated several 

research efforts (e.g., Eto, 1988; Valor, Meneu & Caselles, 2001; Sailor & Munoz, 1997; 

Pardo, Meneu & Valor, 2002).  The most notable trend observed in the existing literature 

was that, of all weather conditions studied, outdoor air temperature had the most 

significant impact on energy consumption, thus becoming the standard measure of 

analysis. 
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Analyses of weather conditions and their effects on reported energy consumption 

have been accomplished involving individual facilities and entire regions or countries 

such as Turkey or Spain; however, research covering Air Force installations or 

comparably-sized areas does not appear to have been accomplished.  Additionally, many 

of the research efforts focused on only one energy source (primarily electricity) and 

covered one economic sector (residential). Therefore, this research effort intended to 

bridge that gap in the literature and provide a more broad analysis than individual 

facilities, yet more focused than entire countries or regions.  This research effort also 

covered numerous energy sources and two economic sectors.    

Problem Statement 

The federal government promotes a comprehensive energy policy that directs its 

various agencies to comply with federal laws, regulations, executive orders, and policies; 

these agencies are chartered to execute those legislative directives in the most effective 

and efficient manner.  Specifically, the effectiveness of Air Force energy programs 

depends largely on the abilities of base energy managers to accurately assess and manage 

those programs through the use of energy initiatives that minimize energy consumption 

while maximizing energy conservation.  Energy managers are also charged to “promote 

efficiency and reduce costs as much as possible without jeopardizing mission capabilities 

or reducing the quality of life for DoD personnel” (DoD, 2005, p. 2).  However, the 

attainment of mandated energy goals are difficult to accomplish without a full 

understanding of weather related impacts on energy consumption.  Therefore, it is vital to 

identify those variables that influence facility energy usage.  The main research objective 

9 



 

of this effort was to evaluate the impact of weather variations on energy consumption 

efforts at Air Force installations located throughout the world.  

Research Objectives/Questions 

This research effort attempted to answer the following questions in support of the 

research objective.  

1. What type of variation does weather impose on energy consumption at Air Force 
bases?  

 
2. Which months are best/worst in terms of energy consumption? 

 
3. Which energy sources (electricity, natural gas, other) vary the greatest between 

the heating and cooling seasons?  
  

This research effort also provided a user-friendly energy model to be used by energy 

managers to determine energy consumption rates based on various weather parameters. 

Methodology 

Energy consumption and weather data were statistically analyzed through 

multiple linear regression to create an overarching energy consumption model applicable 

to each U.S. Air Force installation worldwide.  Based on existing literature, the three 

weather conditions analyzed in this thesis effort were outdoor air temperature (in the 

form of heating and cooling degree-days), wind speed, and relative humidity.  A step-by-

step process was undertaken to review existing energy and weather data and to ensure all 

linear regression-related assumptions were met in order to produce a statistically sound 

and useful energy model.  Additionally, graphical statistical methods were used to 

conduct applicable trend analysis to determine which months are best and worst in terms 
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of energy consumption and to identify which energy sources vary the most during the 

heating and cooling seasons.  

Assumptions 

Two assumptions were made during the course of this research work.  First, the 

energy consumption data collected from each base were assumed to be accurate and 

complete, specifically total installation square footage and energy usage per fuel source.  

Second, the weather data were also considered accurate and complete. 

Significance of Study 

Appropriate implementation of base energy programs is essential to meeting U.S. 

energy conservation goals.  This research effort could potentially provide useful 

information to Air Force energy policy decision-makers, headquarters-level energy 

managers, career field leaders, and base energy managers.  Specifically, the energy model 

will provide insight into the relationship between energy consumption and weather, 

thereby providing a method to predict future weather-based energy requirements.  This 

research effort will also add to the existing literature and cover a geographical area yet to 

be analyzed in detail. 

Purpose of Remaining Chapters 

The remainder of this thesis consists of four chapters: Literature Review, 

Methodology, Results, and Discussion.  Chapter II presents an in-depth review of 

relevant literature pertaining to national energy policy and energy consumption.  Chapter 

III provides a discussion of the methodology used to statistically analyze weather impacts 
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on energy consumption.  Chapter IV discusses the results of the data analysis.  Finally, 

Chapter V presents the conclusions, recommendations, and suggestions for future 

research efforts. 

 



 

Chapter II. Literature Review 
 

This thesis effort discusses weather impacts on energy consumption; therefore, it 

is important to understand the weather mechanisms used in the analysis and the various 

energy sources consumed on Air Force installations.  A review of previous efforts that 

identify various influencing factors is equally important to fully address all aspects 

related to energy consumption.  Numerous energy studies have been completed that 

bracket the spectrum from investigations of individual buildings to those covering large 

regions; however, none covered the areas that fall between these two extremes, such as 

those involving areas comparable in size to Air Force installations.  Despite these 

shortcomings, the existing literature contains a knowledge base of weather parameters 

which influences energy consumption and provides insight into which factors are the best 

candidates to be utilized in this thesis effort.  Thus, weather parameters, heating and 

cooling degree-day fundamentals, and the Defense Utility Energy Reporting System 

(DUERS) process are discussed, followed by an explanation of energy sources utilized at 

Air Force installations. 

Weather Parameters 

As referenced in the previous chapter, existing literature shows that weather does 

impact energy consumption.  Numerous regression analyses have indicated correlations 

between weather and energy consumption; the resulting models are commonly used to 

predict future energy demands either on individual buildings or in regional areas (Lam, 

1998; Eto, 1988; Valor, Meneu & Caselles, 2001; Sailor & Munoz, 1997; Pardo, Meneu 
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& Valor, 2002).  More specifically, weather parameters such as air temperature, relative 

humidity, and wind speed have been found to influence energy consumption (Eto, 1988).  

Furthermore, researchers are in consensus that the leading weather parameter with the 

most significant impact on energy usage is outdoor air temperature (Sailor, 2001; Eto, 

1988; Lam, 1998; Quayle & Diaz, 1980; Valor, Meneu & Caselles, 2001). 

In a study conducted by Lam (1998), energy data covering a 23-year period (1971 

to 1993) were analyzed to determine the relationship between residential electricity 

consumption and climatic factors in Hong Kong.  Lam (1998) selected cooling degree-

days (CDD) (derivation of outdoor air temperature which is discussed later in this 

chapter), latent enthalpy days (humidity reduction requirement), and cooling radiation 

days (measure of cooling load due to solar radiation) as the three critical weather 

parameters used in his analysis.  He initially performed multiple linear regression 

analysis with all three independent variables and later with only CDD as the independent 

variable.  The results of the analysis indicated a strong influence of CDD, but that latent 

enthalpy days and cooling radiation days were not statistically significant in affecting 

residential energy consumption on a regional scale.  He surmised that dropping latent 

enthalpy and cooling radiation days did not significantly affect the regression correlation 

and stated that CDD accounted for 74 to 93 percent of the variation in residential 

electricity consumption.  Lam (1998) also added three social, economic, and 

demographic variables (household size, average monthly household income, and 

electricity price) to the regression equation.  He analyzed the monthly and annual data, 

converted the numbers into their natural logarithm, and achieved coefficient of 
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determination, R2, values of 0.9 and 0.98, respectively.  The results of this study support 

the claim that outdoor air temperature has a large influence on energy consumption and 

are valuable in the creation of an energy model. 

Yan (1998) followed Lam’s (1998) Hong Kong study with one that covered the 

time period of 1980 through 1994 and investigated the impacts of vapor pressure, cloud 

cover, humidity, and mean air temperature on residential electricity consumption.  He 

gathered monthly residential electricity consumption data and average monthly mean 

temperatures for the analysis.  He also used a “clo” factor, which “measures the amount 

of clothing insulation required to maintain comfort under given atmospheric and 

metabolic conditions” (Yan, 1998, p.17).  This clo factor was calculated using various 

parameters including cloud cover, ambient air temperature, and dry heat transfer, which 

were then averaged into monthly figures.  In addition to the above variables, a time 

factor, in terms of different years, was added to eliminate the effect economic growth had 

on energy consumption.  Using multiple regression analysis, Yan (1998) found that vapor 

pressure and cloud cover were not statistically significantly related to energy 

consumption in the residential sector, while mean temperature did exhibit a strong 

relationship.  Yan (1998) produced R2 values that ranged from 0.82 to 0.902 in his 

analysis. 

Sailor (2001) conducted an analysis that measured air temperature, wind speed, 

and humidity effects in another regional study that covered eight geographically diverse 

states located in the United States (California, Florida, Illinois, Louisiana, New York, 

Ohio, Texas, and Washington).  Sailor (2001) obtained monthly residential and, unlike 
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the above two studies, commercial electricity consumption data for each state covering 

10 to 15 years and subsequently adjusted the data to convert it into a per capita 

consumption measure.  Additionally, he adjusted the data to reduce the non-climate 

related consumption trend.  Sailor (2001) used heating degree-days (HDD), CDD, 

humidity, and wind speed as the independent variables in his model.  The results 

indicated that air temperature, in the form of HDD and CDD, was statistically significant 

in all eight states, wind speed was statistically significant in four states (Florida, 

Louisiana, New York, and Texas), and humidity was only statistically significant in one 

state (Louisiana).  The resulting regression models produced R2 values that fell between 

0.709 and 0.873.  As with Lam’s (1998) and Yan’s (1998) studies, Sailor’s (2001) 

analysis provided confirmation that outdoor air temperature was again an important 

climatic variable, along with evidence for wind speed and possibly humidity as 

candidates. 

Valor, Meneu, and Caselles (2001) conducted another regional study that 

analyzed the relationship between air temperature and energy consumption in Spain in an 

attempt to create a model that predicted future consumption needs.  This study was 

slightly different from the three studies shown above in that it was not restricted to only 

residential electricity use as Yan (1998) and Lam’s (1998) studies were or to residential 

and commercial electricity use as Sailor (2001).  This study included residential, 

commercial, and industrial sectors throughout Spain in the analysis.  They collected daily 

electricity loads and daily mean air temperatures from January 1983 to April 1999.  The 

daily mean air temperatures were then population-weighted because disaggregated 
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electricity consumption data were not available for the different regions.  After this 

adjustment, the mean temperatures were then converted to HDD and CDD.  Of special 

note, Valor et al. (2001) used elasticity demand functions to create their models instead of 

regression and only analyzed HDD and CDD climatic variables.  Therefore, a direct 

comparison of R2 values was not possible.  Their results, however, indicated a sensitivity 

of electricity load to daily air temperatures.  This study proved beneficial since it 

included industrial and commercial sector electricity data with residential data.  Since Air 

Force installations include facilities that are included in commercial and residential 

economic sectors, this study provided valuable information in their overall impact. 

Le Comte and Warren (1981) used national population-weighted CDD data to 

observe the influence of cooling season temperatures on electricity consumption in the 

contiguous United States.  Over a three year period (1977 through 1979), daily CDD 

were collected and converted into weekly population-weighted CDD totals.  Weekly 

national electricity use data from the industrial, commercial, and residential sectors were 

also collected for the analysis.  This analysis was unique in that the regression equation 

included growth factors for two of the three years, a holiday factor dummy variable to 

indicate holiday weeks, and the previous week’s national CDD totals.  Le Comte and 

Warren (1981) included the previous week’s CDD totals in the model because they felt 

that cooling requirements for the current week were partially derived from the previous 

week’s heat buildup.  The model produced impressive results in which the independent 

variables accounted for 96 percent of the national electricity consumption (i.e., R2 = 

0.96). 
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In a study that included electricity and fuel oil, Quayle and Diaz (1980) analyzed 

the influence of outdoor air temperatures (in the form of HDD) on energy consumption in 

40,000 individual residences in a 2,500 square mile area in Asheville, North Carolina, 

over an 11-year period.  Using monthly electricity and fuel oil consumption data, Quayle 

and Diaz (1980) created regression models to measure the relationships.  Regarding the 

electricity consumption numbers, a non-climate consumption baseline was established by 

averaging the June through August consumption values.  This was possible since 

Asheville experiences mild summers that do not require a significant air conditioning 

load.  It was thus assumed that the electricity loads for those months were a sufficient 

baseline and were removed from the monthly electricity consumption values.  Both 

models produced excellent results, achieving correlation coefficients over 0.90 (i.e., R = 

0.90).  Although the study did not include any weather parameters other than HDD, it 

was beneficial in that it included two energy sources in its regression analysis and 

provided possibilities into baseline calculations. 

Finally, Mirasgedis et al. (2006) modeled daily and monthly electricity 

consumption values over a 10–year period (1993 to 2002) in Greece.  They obtained 

hourly data of the electric load in all economic sectors and calculated daily and monthly 

values from the data.  For weather parameters, mean daily outdoor temperature and mean 

daily relative humidity were obtained from two meteorological stations located in 

northern and southern Greece.  Two models were created; the daily model included daily, 

holiday, and monthly dummy variables while the monthly model included monthly 

dummy variables.  Both models included HDD, CDD, relative humidity measures, a time 
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variable which approximated the long-term trend in electricity demand created by 

economic development in Greece, and autocorrelation variables.  Additionally, the 

electricity consumption data was transformed by taking the natural logarithms in an 

attempt to eliminate heteroskedasticity.  The results of the models produced R2 values of 

96 percent (daily) and 98 percent (monthly), the highest noted in all of the literature.  

This study provided keen insight into the use of dummy variables to help increase the 

accuracy of the regression models, along with the influence of heating and cooling 

degree-days and relative humidity. 

Thus, existing literature is in agreement that outdoor air temperature provides the 

most significant influence on energy consumption, while other weather parameters have 

varying levels of impacts.  In each of the studies above that included linear regression, 

the coefficients associated with HDD and CDD were all positive.  This means that in all 

regression models, as heating or cooling degree-days increases, the energy consumption 

value increases by that coefficient amount.  Of the weather factors addressed, outdoor air 

temperature, wind speed, and relative humidity were analyzed in this thesis effort.  In 

order to properly analyze outdoor air temperature and its impact on energy consumption, 

it must be converted from its raw form into heating and cooling degree-days.  Therefore, 

a detailed account of heating and cooling degree-day information is provided next. 

Heating and Cooling Degree-day Fundamentals 

Once outdoor mean air temperatures are recorded, heating and cooling degree-

days can then be derived from the data.  Degree-day analyses used for weather 

normalization are common in literature because of the availability of unbiased air 
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temperature data and the lack of other less complicated or data intensive options (Eto, 

1988).  Airports, weather bureaus, and Air Force installations collect daily and, in some 

instances, hourly temperature data that is widely accessible, which is then converted to 

heating and cooling degree-days.  Eto (1988) defines heating degree-days as “the sum of 

the positive differences between a base temperature and the average daily outdoor dry-

bulb temperature for a given time period” (p. 114).  Cooling degree-days are determined 

using a similar process.  The formulas for both degree-day processes are shown below 

(Buyukalaca, Bulut, & Yilmaz, 2001).   

 (1) ) ( )b mT T +HDD (1
days

day= −∑
 

 (2) 

 

CDD (1 ) ( )m b
days

day T T

where HDD equals heating degree-days, CDD equals cooling degree-days, Tb equals the 

base temperature, and Tm equals the daily mean outdoor temperature. 

The base temperature, Tb, is commonly defined as 65 degrees Fahrenheit (18.3 

degrees Celsius) (Le Comte & Warren, 1981; Lam, 1998; Eto, 1988; Valor, Meneu, & 

Caselles, 2001; Sailor & Munoz, 1997).  The daily mean outdoor temperature is 

calculated using the following formula (Buyukalaca, Bulut, & Yilmaz, 2001). 

 (3) 

 

where Th and Tl equals the highest (maximum) and lowest (minimum) daily temperatures, 

respectively. 
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The heating and cooling degree-day method has numerous applications.  

Buyukalaca, Bulut, and Yilmaz (2001) discussed the use of the degree-day method in 

developing heating, ventilating, and air-conditioning (HVAC) system designs focused on 

efficiency and cost effectiveness and to indicate energy demand requirements to heat or 

cool a facility.  Le Comte and Warren (1981) applied the degree-day method to model 

summer temperatures on national electricity consumption using population-weighted 

weekly degree-day totals.  However, the majority of applications of the degree-day 

method focus on predicting regional or individual facility energy consumption estimates 

(Eto, 1988; Valor, Meneu & Caselles, 2001; Yan, 1998; Lam, 1998; Sailor, 2001; 

Mirasgedis et al., 2006; Sailor & Munoz, 1997; Pardo, Meneu & Valor, 2002; Sarak & 

Satman, 2003; Quayle & Diaz, 1980). 

Defense Utility Energy Reporting System (DUERS) Process 

As discussed in Chapter I, a reporting system was required to capture energy 

consumption data in order to measure energy reduction efforts in federal facilities.  The 

Defense Energy Information System (DEIS) was created in 1974 to provide the means to 

account for utility energy resource consumption in Department of Defense (DoD) 

facilities (DoD, 1993; Department of the Air Force, 1996).  This automated management 

system records all DoD energy utility consumption data and is vital in managing the 

Energy Policy Act and Executive Order energy reduction goals previously discussed in 

Chapter I.  The Defense Utility Energy Reporting System (DUERS) superseded the DEIS 

reporting system and provides policy makers with energy data to enable the development 

and execution of federal energy programs (DoD, 1993).  The energy consumption figures 
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are integral in tracking energy goal conservation progress, corroborating energy reduction 

projects’ performances, and monitoring overall consumption trends in support of the Air 

Force mission (Department of the Air Force, 1996).  Each Air Force installation is 

required to collect and submit all energy consumption data quarterly to their respective 

major command (MAJCOM), who then submits the data to the Air Force Civil Engineer 

Support Agency (AFCESA).  Annually, AFCESA submits the Air Force’s total energy 

consumption data to the Office of the Secretary of Defense (Department of the Air Force, 

1996). 

Energy Source Analysis 

An understanding of the predominant national energy sources and their respective 

uses is necessary to develop and analyze the results of the energy consumption model and 

to conduct trend analysis.  The following sections will discuss common energy sources 

found in the United States and their uses throughout the various economic sectors.      

 

Common Energy Sources 

Energy is produced from fossil fuels (coal, natural gas, and crude oil), nuclear 

power, and renewable sources (hydroelectric, geothermal, solar/photovoltaic, wind, and 

biomass) (Annual Energy Review, 2006).  Figure 2-1 displays the United States’ energy 

flow beginning with the raw products and ending with the economic sectors into which it 

flows.  These various energy sources are used to meet all energy requirements for Air 

Force installations.  Therefore, the DUERS categorically collects consumption data from 

the following utility sources:  electricity, natural gas, fuel oil, coal, propane/liquefied 
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petroleum gas/butane, photovoltaic, solar thermal, wind, wood, geothermal, refuse-

derived, and hydroelectric power (Department of the Air Force, 1996). 

As each energy source is purchased and consumed, the British Thermal Unit 

(BTU) equivalent is determined and consolidated into an overall energy consumption 

total for the installation.  The BTU amount, cost per energy source, and total BTU 

consumption are captured in the DUERS.  Additionally, the DUERS requires energy 

consumption for military family housing units and commercial facilities to be recorded 

separately (Department of the Air Force, 1996).   
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Figure 2-1.  United States Energy Flow in 2005 (DOE, 2006a) 
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Energy Source Usage 

Air Force installations are commonly divided between residential and commercial 

sectors.  The residential sector is composed of military family housing, while the 

commercial sector contains offices, warehouses, hangars, and other non-housing 

facilities.  Energy consumption for other billeting facilities (such as dormitories, 

temporary living facilities, and visiting officers and enlisted quarters) are combined in the 

commercial sector’s total.  Each sector has varying energy source demands and 

requirements.  Table 2-1 displays these various energy sources and their respective 

consumption percentages in the residential and commercial sectors (DOE, 2006a).  

Recognizing and understanding the different energy requirements for each sector is 

critical in accurately normalizing energy consumption data using selected weather 

parameters.  Figure 2-2 provides a view of the total Air Force facility energy source 

usage in 2006.  Table 2-1 and Figure 2-2 provide information regarding which energy 

source is used in the greatest quantity on Air Force installations, thereby enabling 

investigation into research questions two and three identified in Chapter I. 

 

Table 2-1.  United States Residential and Commercial Sector Consumption Percentage by 
Energy Source (DOE, 2006a) 

 
Energy Source Residential Commercial 

Natural Gas 46.6 percent 37.7 percent 
Electricity 37.9 percent 58.0 percent 

Fuel Oil/LPG 11.7 percent 3.8 percent 
Wood 3.9 percent 0.0 percent 

District Heat 0.0 percent 7.5 percent 
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Air Force Facility Energy 2006
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Figure 2-2.  Air Force Facility Energy Data 2006 (AFCESA, personal communication, 
September 27, 2007) 

 

Further distilling energy consumption data, all energy sources do not contribute 

equally to major energy requirements in facilities, such as heating and cooling loads or 

lighting.  For example, natural gas is not commonly used to meet cooling requirements in 

buildings; however, it is most commonly used in providing space heating.  Electricity, by 

contrast, is used for both heating and cooling requirements in addition to providing power 

to non-process systems such as lighting and electrical appliances.  Electricity, though, is 

used proportionally more in cooling than heating as demonstrated in the commercial 

sector.  Electricity used in meeting cooling demands accounts for 25.6 percent of all 

electricity usage in the commercial sector, while only 5 percent of electricity satisfies 

space heating needs (DOE, 2006a). 
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Renewable energy sources such as solar/photovoltaic, wind, and hydroelectric are 

also used to generate electricity.  Other renewable energy sources are used to support 

heating requirements, like biomass and geothermal (DOE, 2006a).  Several Air Force 

installations take advantage of purchasing energy derived from renewable sources or 

directly utilizing renewable energy.  Renewable energy sources, along with all other 

energy sources, are captured and reported in DUERS. 

Conclusion 

After analyzing all previous literature summarized in this chapter, two 

conclusions can be made.  First, weather parameters are paramount in deriving an energy 

model that accurately reflects energy consumption, with outdoor air temperatures as the 

single most important factor.  Second, multiple regression analysis was routinely 

performed to assess the energy consumption explained by weather characteristics and 

was proven to be the most effective statistical method used.  These two conclusions 

create the foundation for this thesis effort, providing insight into important influential 

factors for energy consumption at Air Force installations, while allowing flexibility to 

add other factors yet to be addressed by previous research.  The end state will be the 

creation of a model that accurately predicts energy consumption at all Air Force 

installations.  Finally, an understanding of the energy source requirements will assist in 

conducting trend analysis on energy consumption.   

 



 

Chapter III.  Methodology 
 

This chapter provides an overview of the multiple linear regression analysis used 

to develop a predictive model of energy consumption at Air Force installations.  The 

chapter will begin with a detailed account of the data collection process and the 

population selection criteria, followed by a six-step multiple linear regression process 

summarized by McClave, Benson, and Sincich (2005).  During the discussion of these 

steps, detailed information regarding the development of the model and statistical tools 

utilized to analyze the data were provided in order to establish a plan to address the 

primary research question.  Finally, the chapter will conclude with the statistical methods 

relied upon to conduct trend analysis to answer the final two research questions. 

Data Collection 

In order to adequately address the research questions identified in Chapter I, data 

pertaining to energy consumption and weather parameters were required.  Thus, data 

were collected from two independent sources.  First, energy consumption data, including 

base, major command (MAJCOM), million British Thermal Units (MBTU) of energy 

consumption per month, and square footage, were obtained from the Air Force Civil 

Engineer Support Agency (HQ AFCESA) located at Tyndall Air Force Base, Florida.  

AFCESA collected the energy consumption data from the Defense Utility Energy 

Reporting System (DUERS), as reported by each Air Force installation.  The timeframe 

of the energy consumption data was from October 1985 to September 2006, 

encompassing 22 fiscal years of historical data.  Second, weather parameters, including 
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heating degree-days (HDD), cooling degree-days (CDD), wind speed (WS), and relative 

humidity (RH), were provided by the Air Force Combat Climatological Center (AFCCC), 

located in Asheville, North Carolina.  Data were captured from the same time period as 

was the energy consumption data, from October 1985 through September 2006.  The 

weather parameters above (HDD, CDD, wind speed and relative humidity) were selected 

primarily on their significance as evidenced in the empirical literature addressed in the 

previous chapter. 

Population 

The population in this thesis consisted of all active duty Air Force installations 

that initially submitted energy consumption data into DUERS beginning in 1985.  Two 

criteria were placed on the population:  1) the installation must have submitted energy 

consumption data into DUERS for the timeframe of October 1985 to September 2006 and 

2) weather data for the installation must have been available from AFCCC.  The first 

criteria excluded all active duty installations that were previously closed as part of base 

realignment and closure actions.  By applying these two criteria, 78 installations were 

excluded from the total population of 158 active duty bases.  This left 80 active duty Air 

Force installations (National Guard and Reserve installations were excluded) widely 

dispersed throughout the contiguous United States, Alaska, Azores, Germany, Greenland, 

Guam, Hawaii, Italy, Japan, Korea, Spain, Turkey, and the United Kingdom.  The 

dependent and independent variables that were analyzed are described below. 
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Multiple Linear Regression Model Development 

The focus of this research effort was to determine the effects of weather on energy 

consumption, as stated in Chapter I.  As identified in Chapter II, the most common 

technique employed by previous researchers in empirical literature was the use of 

multiple linear regression (Lam, 1998; Eto, 1988; Valor, Meneu & Caselles, 2001; Sailor 

& Munoz, 1997; Pardo, Meneu & Valor, 2002).  According to Kutner, Nachtsheim, and 

Neter (2004), “regression analysis is a statistical methodology that utilizes the relation 

between two or more quantitative variables so that a response or outcome variable can be 

predicted from the other, or others” (p. 2).  Kutner et al. (2004) also state “a regression 

model is a formal means of expressing the two essential ingredients of a statistical 

relation: (1) a tendency of the response variable Y to vary with the predictor variable X in 

a systematic fashion and (2) a scattering of points around the curve of statistical 

relationship” (p.5). 

By using linear regression, a determination can be made whether selected 

quantitative weather variables exhibit any relationship or influence on the energy 

consumption dependent variable.  A relationship between two variables can be expressed 

by a mathematical equation, as shown below (Kutner et al., 2004): 

 ( )Y f X=  (4)  

where Y equals the dependent variable and X equals the independent variable.  This 

equation can then be transformed to create a multiple, first-order linear regression 

equation as shown below (Kutner et al., 2004): 
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  (5)  1 2 p-1 , 1...i i i i pY X X X0 1 2 −= β + β + β + + β + εi

where Yi equals the dependent variable value in the ith trial, Xi1, ..., Xi, p-1 equals the 

independent variable values in the ith trial, β0, β1, ... βp-1 equals the regression coefficients 

or parameters, εi equals the random error term, and i equals 1, …, n.  The y-intercept, β0, 

along with the regression coefficients and associated independent variables compose the 

deterministic portion of the regression equation.  The random error term, εi, composes the 

non-deterministic portion of the equation. 

Four basic assumptions regarding the random error term, ε, are required to enable 

the proper use of regression analysis.  The four assumptions are identified below 

(McClave et al., 2005, p.712): 

(1)  The mean of the probability distribution of ε is zero.  That is, the 
average of the values of ε over an infinitely long series of experiments is 
zero for each setting of the independent variable x.  This assumption 
implies that the mean value of y, E(y), for a given value of x is E(y) = β0 + 
β1x. 
 
(2)  The variance of the probability distribution of ε is constant for all 
settings of the independent variable x.  This assumption means that the 
variance of ε is equal to a constant, σ2, for all values of x. 
 
(3)  The probability distribution of ε is normal. 

(4)  The values of ε associated with any two observed values of y are 
independent.  That is, the value of ε associated with one value of y has no 
effect on the values of ε associated with other y values. 
 

McClave et al. (2005) developed a six-step process used to assist in the creation 

of linear regression models.  This methodology identifies the independent variables, 

estimates the variable regression coefficients, verifies the random error term assumptions, 
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and evaluates the accuracy and usefulness of the model.  These six steps are used in this 

thesis effort and are discussed in detail below.  

Step 1:  Hypothesize the Deterministic Components of the Model 

In this first step, the independent variables to be used in the regression model are 

selected.  Variables fall into two categories:  quantitative or qualitative.  Quantitative 

variables include data that are “recorded on a naturally occurring numerical scale” 

(McClave et al., 2005, p.17).  Qualitative variables, in contrast, cannot be measured on a 

numerical scale; examples include gender or political affiliation.  Thus, qualitative 

variables are grouped into categories.  Once the qualitative variables are entered into 

regression equations, they are classified as dummy or indicator variables (Kutner et al., 

2004).  Coding of dummy variables can take any numerical form; however, in order to 

perform regression analysis on those dummy variables, special actions must be taken.  

Qualitative variables with c classes are represented by c-1 dummy variables in the model, 

where c is equal to the total number of qualitative categories.  The cth class not 

represented in the model serves as the base case (Kutner et al., 2004).      

In addition to quantitative and qualitative variables, interaction variables can also 

be created and included in linear regression models.  Interaction variables are simply 

cross-product interaction effects of two or more quantitative variables.  Interaction 

variables create reinforcement or interference effects on the dependent variable.  

Basically, the interaction variables affect both the y-intercept and the slope of the 

regression line.  When an interaction occurs, the effect on the dependent variable from a 
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change in the value of one of the cross-product variables depends on the other cross-

product variable value(s) (McClave et al., 2005).  

Independent quantitative variables used in this thesis effort were selected from 

those identified in literature as having predictive effects on energy consumption as 

identified above.  Independent qualitative variables were chosen to facilitate the creation 

of a robust model that will accurately represent energy consumption figures for each Air 

Force installation.  All independent variables will be tested for their predictive capacity; 

however, only the most predictive variables will remain in the final model. 

 

Step 2:  Estimate the Unknown Model Parameters 

This second step uses the data gathered on the independent and dependent 

variables to estimate each unknown model parameter.  Variable data are entered into a 

predictive analysis software program, which conducts numerous simultaneous linear 

regression calculations in an attempt to fit the values to a model.  When fitting the values 

to a model in this manner, a method must be used to evaluate the fit of the model; the 

method of least squares is one such method.  This least squares method attempts to 

minimize the sum of squares of the errors (SSE) in the regression line, thus enabling the 

best values of the regression coefficients to be determined.  These regression coefficients 

are calculated in such a manner as to minimize the difference between the actual and 

predicted dependent variable values.  
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Step 3:  Specify the Probability Distribution of the Random Error Term 

In this step, the random error term’s probability distribution is specified and the 

standard deviation of this distribution is estimated.  As stated in the error term 

assumptions above, the random error is assumed to be independent, have a normal 

probability distribution with a mean of zero, and variance equal to σ2.  Since the σ2 

represents the variance of the random error, it is an extremely important measure in the 

development of the model as it predicts the actual values of the dependent variable.  

Thus, a large value of σ2 implies that large random error values exist, indicating a large 

deviation between the predicted and actual dependent values.  The variance, however, is 

rarely known and must be estimated.  Again, the predictive analysis software program is 

used to calculate this measure by dividing the SSE by the difference between the number 

of observations and the number of estimated regression coefficients (McClave et al., 

2005).    

   

Step 4:  Verify the Assumptions on the Random Error Term 

Once regression analysis is applied to the independent and dependent data sets 

and a multiple linear regression model is produced, analysis must then be accomplished 

to verify the random error term assumptions are still valid.  This is accomplished through 

a series of validation tests, primarily involving residual analyses.  As each random error 

assumption is validated, the reliability of the model is improved.  It is important to note 

that when using linear regression in practical applications, it is rare that all random error 
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term assumptions are met; however, as long as the departure from the assumptions is not 

too large, the model will still provide useful results (McClave et al., 2005). 

The analysis begins with the estimation of the random error, which is found by 

determining the difference between the actual dependent value and the estimated mean.  

This estimated error is known as a residual and is integral in the assumption validation 

tests.  Residuals can then be plotted through a series of graphical methods to test the 

random error assumptions.   

Testing the first assumption, which states the mean of the probability distribution 

of the error term is zero, can be accomplished by producing a scatter plot of residuals and 

predicted values.  If the data are randomly distributed around the zero residual line 

without a discernable pattern, the scatter plot indicates a mean of zero.  This plot will be 

produced to verify the first assumption. 

The second assumption to be checked is whether the variance of the probability 

distribution is constant.  Residual plots are also used to verify this assumption.  The 

residuals and standardized predicted values are plotted and evaluated in the same manner 

as the first assumption.  Standardized predicted values are those values that are 

transformed by dividing the difference between the mean predicted value and the 

predicted value by the standard deviation of the predicted value.  This produces 

standardized predicted values with a mean of zero and a standard deviation of one (SPSS 

tutorial, 2007).  Once the scatter plot is produced, a random distribution clustered around 

the residual zero line is desired, indicating a constant variance. 

35 



 

The third assumption regarding a normal probability distribution is verified 

through two graphical tools consisting of a histogram and a probability plot of the 

residuals.  The histogram is developed by fitting the residuals to a normal distribution 

curve.  If the residuals closely follow the normal curve, the distribution is considered 

normal.  The second plot involves comparing the residuals to a normal probability plot 

depicted by a straight line.  Once the residuals are plotted along the straight line, a visual 

assessment is conducted.  If the residuals closely follow the straight line, the distribution 

is considered normal.  Both of these descriptive displays will be utilized. 

The final assumption involves the random error terms being independent of each 

other.  This assumption is verified through the use of the Durbin-Watson test statistic, 

which detects autocorrelation in residuals.  Autocorrelation is defined as “the correlation 

between time series residuals at different points in time” (McClave et al., 2005, p.1046).  

The SPSS 15.0 for Windows predictive software package calculates this test statistic, in 

which values range between zero and four.  Values close to two indicate no 

autocorrelation, while values above and below two indicate positive and negative 

autocorrelation, respectively.  Time series data, such as the data used in this thesis effort, 

is commonly subjected to positive autocorrelation.  Violation of this independence 

assumption affects the precision of the regression model, but not the accuracy of the 

estimates of the coefficients (McClave et al., 2005).  The Durbin-Watson test statistic will 

be calculated and analyzed in this thesis effort. 

In addition to validating the random error term assumptions, statistical outliers 

and influential data points will be investigated using residual analyses.  According to 
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McClave et al. (2005), outliers are data points that “are unusually large or small relative 

to the other values in a data set” (p. 100).  Residual analyses are beneficial in detecting 

deviations in the regression model.  Approximately 95 percent of the residuals should fall 

within two standard deviations and 99 percent within three standard deviations.  

Residuals that fall outside of three standard deviations are thus considered outliers and 

require further investigation to determine the cause.  A decision must be made to either 

keep the outlier in the data set or reject it.  Outliers will be identified statistically by 

reviewing standardized residual data.  Similarly, influential data points affect regression 

models by skewing the data and producing misleading results.  Influential data points will 

be detected through the use of the Cook’s distance measure.  The Cook’s distance 

measure “considers the influence of the ith case on all n fitted values” (Kutner et al., 

2004, p.402).  While no set rules govern the results of this measure, large values indicate 

the possibility of influence and will be investigated.  The SPSS 15.0 for Windows 

software package calculates the Cook’s distance measure and will be analyzed to detect 

any influential data points. 

 

Step 5:  Statistically Evaluate the Usefulness of the Model 

This step is conducted to evaluate the statistical significance of the multiple linear 

regression model produced from the previous four steps.  Analysis of the model begins 

with inferences regarding the estimated regression coefficients.  The regression 

coefficients are subjected to hypothesis testing to ensure they are statistically significant.  

Two hypothesis tests are used for each coefficient:  (1) the null hypothesis says the 
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coefficient is equal to zero and (2) the alternate hypothesis says the coefficient is not 

equal to zero.  A p-value is calculated for each regression coefficient and compared to an 

alpha of 0.05.  If the p-value is greater than 0.05, the null hypothesis cannot be rejected.  

Similarly, if the p-value is less than 0.05, the null hypothesis can be rejected, meaning the 

regression coefficients are statistically different than zero.  The SPSS 15.0 for Windows 

software package provides a detailed table with corresponding regression coefficients and 

p-values, allowing rapid identification of statistically significant independent variables.  

The next test conducted involved an analysis to determine the existence of 

multicollinearity.  Multicollinearity in regression exists when two or more independent 

variables are highly correlated, making it difficult to determine if redundant effects are 

imposed on the dependent variable (Kutner et al., 2004).  SPSS 15.0 for Windows 

calculates variance inflation factors (VIF), which provide insight into multicollinearity 

for each variable.  When VIF values are greater than ten, this indicates that 

multicollinearity may be present and the identified variables are causing excessive 

influence in the least squares method (Kutner et al., 2004).  The VIF values will be 

analyzed for each dependent variable. 

The remaining statistical test involves the multiple coefficient of determination 

value, R2, which provides an indication of how well the model fits the data set.  The R2 

“represents the fraction of the sample variation of the y values that is explained by the 

least squares prediction equation” (McClave et al., 2005, p.788).  This value, which 

ranges between zero and one, is the explained variability divided by the total variability.  

Thus, the higher the R2 value, the more the variation in the dependent variable is 
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explained by the independent variables.  Unfortunately, the R2 value can be increased 

simply by adding additional independent variables.  However, another measure, called 

the adjusted multiple coefficient of determination, compensates for this negative aspect 

by accounting for sample size and the number of parameters included in the model.  

Therefore, the adjusted R2 value provides a more accurate measure of model fit, and will 

be analyzed in this research effort. 

 

Step 6: Use the Model for Prediction or Estimation 

The final step tests the model’s predictive ability by applying the regression 

model to a subset of the data and comparing the predicted values to the actual values.  A 

portion of the data is commonly set aside and not used in the creation of the regression 

model.  This portion is then analyzed by the regression model to determine its predictive 

capabilities.  For this thesis effort, one fiscal year (2006) of data was not used in 

constructing the regression model, but was used to compare the model’s predicted values 

with the actual values. 

Trend Analysis 

Trend analysis is beneficial in determining whether events are recurring in a 

discernable pattern and enable forecasting or prediction of future similar events.  Trend 

analysis also provides a mechanism in which a researcher can make informed decisions 

or recommendations based on the trend data.  Trend analysis will be used to attempt to 

address the second and third research objective identified in Chapter I.   
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The research question regarding which months are best/worst in terms of energy 

consumption will be addressed by analyzing additional graphical methods.  Monthly 

energy consumption per square foot data will be plotted through the period of October 

1985 to September 2006 to determine whether trending can be predicted.  Throughout the 

year, each individual Air Force installation experiences varying degrees of heating and 

cooling requirements.  Commonly, a transitional period will exist where neither heating 

nor cooling is required, in which the actual outdoor air temperature is close to the 

reference, or base, temperature of 65 degrees Fahrenheit (18.3 degrees Celsius).  This 

would drive both HDD and CDD to remain relatively close to zero, resulting in minimal 

energy consumption per square foot values.  The graphs produced will provide insight 

into the energy consumption levels per month. 

Similarly, the research question regarding which energy sources (electricity, 

natural gas, or other) vary the greatest between the heating and cooling seasons will also 

be analyzed by graphical methods.  Recalling the pie chart of facility energy source usage 

shown in Figure 2-2, electricity and natural gas far exceeded the remaining energy 

sources in terms of overall usage.  Thus, those two sources were selected for comparison.  

The category “other” includes fuel oil, coal, purchased steam, liquid petroleum, and 

propane.  Series of plots depicting levels of energy sources per month will be produced to 

determine which energy source varies the most.  The differential between the most 

energy intensive winter and summer months will be determined, thus providing evidence 

into which energy source varies the greatest throughout the year. 
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Summary 

This chapter provided the methodology used to create and analyze a multiple 

linear regression equation and conduct trend analysis on pertinent data.  First, the data 

collection and population selection process was described.  Then, a synopsis of the six-

step regression model process was presented, followed by a detailed account of the 

requirements involved in each step.  Finally, the trend analysis component of this effort 

was addressed.  This chapter established the roadmap for the next chapter in which the 

actual energy consumption and weather variables, along with the qualitative variables, 

will be presented and analyzed. 

 



 

Chapter IV.  Results 
 

This chapter presents a summary of the results of the analysis with regard to the 

research questions identified in Chapter I.  Statistical methods, through the use of 

graphical tools, were employed to assess possible relationships between the selected 

weather parameters and energy consumption.  Multiple linear regression analysis was 

used to determine the impact that weather conditions have on energy consumption.  

Multiple linear regression analysis was also used to evaluate what effects major 

commands, climate zones, and mission categories contributed to the model.  Finally, 

graphical methods were used to evaluate overall energy consumption trends to determine 

which months were most/least affected by the weather variables and which energy 

sources varied the most between the winter and summer months. 

Variables 

Two types of variables were included in this regression model:  quantitative 

(energy and weather related) and qualitative (demographic).  The quantitative variables 

included those obtained from the Air Force Civil Engineer Support Agency (AFCESA) 

and the Air Force Combat Climatological Center (AFCCC) as discussed in Chapter III.  

Qualitative variables included demographic-related variables that cannot be measured on 

a quantitative scale.  The qualitative variables were selected in order to account for 

additional variation in energy consumption and to provide a more robust, overarching 

model.  Both types of variables are discussed in depth below.   
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Variables Related to Energy Usage and Weather 

As identified in Chapter II, several weather variables have proven predictive in 

regards to energy consumption.  Outdoor air temperature, wind speed, and relative 

humidity indicated some relation with energy consumption in each of the economic 

sectors.  Each of the dependent and independent quantitative variables selected for this 

research effort is discussed below. 

 Thousand British Thermal Units per Square Foot (KBTU/SF) 

This variable is a measure of the total energy consumed per facility square foot 

and serves as the dependent variable in this research effort.  This measure is reported 

monthly in DUERS by each installation as million British Thermal Units (MBTU), but 

was changed to KBTU simply for readability.  Several energy sources including 

electricity, fuel oil, natural gas, and coal contribute to this variable.  However, for the 

purposes of this thesis, the total energy consumption quantity reported, regardless of 

energy source, was utilized in the energy model.  Monthly reported KBTU quantities 

were summed to provide a fiscal year output for each installation.  After the summation 

of the energy consumption, it was divided by the total facility gross square footage as 

reported in the real property records of each respective installation to create the 

KBTU/SF measure.  This step was conducted to standardize the energy consumption 

quantity by square footage to allow for appropriate comparisons between all 80 

installations. 
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Heating Degree-days (HDD) 

This independent variable represents the sum of daily heating degree-days 

experienced at each installation.  AFCCC records daily heating degree-day data and 

provides a monthly total.  The minimum value for HDD is zero.  For example, in warmer 

climates, such as experienced in Hawaii and Guam, the sum of HDDs could be zero for 

the month, or quite possibly, the entire year.  This independent variable was selected due 

to its influence on energy consumption, as detailed in Chapter II. 

 Cooling Degree-days (CDD) 

Similar to HDD, this independent variable represents the sum of daily cooling 

degree-days experienced at each installation.  AFCCC records daily cooling degree-day 

data and provides a monthly total.  The minimum value for CDD is zero.  For example, in 

cooler climates, such as experienced in Greenland, the sum of CDDs could be zero for 

the month or for the year.  This independent variable was selected due to its influence on 

energy consumption, as detailed in Chapter II. 

 Wind Speed (WS) 

This independent variable represents the average monthly wind speed experienced 

at each installation.  AFCCC records daily average wind speeds and provides a monthly 

average; these values were then used to calculate the annual average wind speed.  This 

independent variable was selected due to its influence on energy consumption, as detailed 

in Chapter II. 
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 Relative Humidity (RH) 

This independent variable represents the average monthly relative humidity 

experienced at each installation.  AFCCC records the daily average relative humidity and 

provides a monthly average.  Similar to wind speed, the annual average relative humidity 

was calculated by averaging the monthly relative humidity averages.  This independent 

variable was selected due to its influence on energy consumption, as detailed in Chapter 

II. 

 Interaction Variables 

Six independent variables represent the interaction effects between HDD, CDD, 

WS, and RH.  The six variables are HDD * WS, HDD * RH, CDD * WS, CDD * RH, 

HDD * CDD, and WS * RH.  These six additional independent variables were selected to 

measure their interaction effects on the dependent variable, KBTU/SF. 

 

Variables Related to Demographics 

The following qualitative independent variables were chosen with the intent of 

creating one overarching multiple linear regression model that would be capable of 

predicting energy consumption at each Air Force installation.  Each of the following three 

sets of independent variables was coded as dummy variables and statistically evaluated.  

Each dummy variable has only two allowable value:  zero or one.  If these candidate 

variables prove to have low predictive value in the model, they will be discarded. 
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Major Commands (MAJCOM) 

These independent variables represent seven of the nine major commands in the 

Air Force.  The MAJCOMs include Air Combat Command (ACC), Air Education and 

Training Command (AETC), Air Force Materiel Command (AFMC), Air Mobility 

Command (AMC), Pacific Air Forces Command (PACAF), Air Force Space Command 

(AFSPC), and the United States Air Forces in Europe (USAFE).  The other two major 

commands consist of the Air Force Reserve Command (AFRC) and the Air Force Special 

Operations Command (AFSOC).  The installations within these two MAJCOMs were not 

included in this analysis for two reasons:  (1) daily operations at Reserve installations are 

not equivalent to those at active duty installations and (2) adequate weather data was not 

readily available for a majority of Reserve installation.  Additionally, the two installations 

within the Air Force Special Operations Command (AFSOC), Moody Air Force Base and 

Hurlburt Air Force Base, were recoded and included in the ACC category.  This step was 

taken due to the limited number of bases in AFSOC and the similar missions of AFSOC 

and ACC.  Additionally, Moody historically was an ACC installation and only recently 

changed major commands.  Finally, Bolling Air Force Base and the United States Air 

Force Academy were recoded and included in the AETC category.  Again, this step was 

taken due to their similar missions with AETC.  For this analysis, ACC served as the base 

case and was not be included in the actual regression model.  These variables were 

selected to determine if the installations’ respective MAJCOMs influenced the overall 

energy model. 
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 Climate Zone (CZ) 

These five independent variables represent the five different climate zones in 

which the installations can be categorized.  For this analysis, Climate Zone 1 will serve as 

the base case and will not be included in the actual regression model.  Placement into the 

various climate zones was dictated by the HDD and CDD totals experienced by the 

respective installation.  The metrics used to calculate the applicable CZ are shown below 

(Energy Information Administration, 2007): 

 Climate Zone 1:  less than 2,000 CDD and greater than 7,000 HDD annually 
 Climate Zone 2:  less than 2,000 CDD and 5,500 - 7,000 HDD annually 

Climate Zone 3:  less than 2,000 CDD and 4,000 – 5,499 HDD annually 
Climate Zone 4:  less than 2,000 CDD and less than 4,000 HDD annually 
Climate Zone 5:  2,000 CDD or more and less than 4,000 HDD annually 

 Mission Type 

These four independent variables represent four possible mission types in which 

the installations can be categorized.  The four mission types are Combat Flying; Non-

Combat Flying; Support; and Strategic/Intelligence, Surveillance, and Reconnaissance 

(Strategic/ISR).  For this analysis, Combat Flying will serve as the base case and will not 

be included in the actual regression model.  These four mission types were purposely 

designed in a broad manner to capture the various major missions at each installation 

without creating an excessive number of categories.  Bases classified under the Combat 

Flying mission type are those installations in which a majority of the installation’s overall 

mission is to conduct flying operations in which aircraft are subjected to combat 

missions.  Non-Combat Flying installations represent those bases in which flying 

operations occur frequently but are not subjected to combat operations.  Installations 
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included in this mission category commonly conduct pilot training operations.  Next, the 

Support mission represents those bases that do not have a flying mission or have a very 

small flying component.  Bases included in this category commonly conduct personnel 

training or research activities constituting a significant majority of its mission.  Finally, 

bases in the Strategic/ISR category focus primarily on space launch, satellite operation 

and tracking, missile launch warning, space surveillance, or intercontinental ballistic 

missile operations.  Each of the installations and their respective categories are provided 

in Appendix A. 

Variable Analysis 

As outlined in Chapter III, the six-step approach described by McClave et al. 

(2005) was used to create the multiple regression model.  For the first step, once the 

dependent and independent variables were initially selected, statistical analysis was 

conducted to observe the relationships between the variables.  This step was crucial to 

ensuring the variables behaved in a manner that was conducive to multiple linear 

regression.  The statistical analysis was accomplished through the use of descriptive 

statistics.  McClave et al. (2005) explain that “descriptive statistics utilizes numerical and 

graphical methods to look for patterns in a data set, to summarize the information 

revealed in a data set, and to present the information in a convenient form” (p. 5).  

Common graphical representations of data include scatter plots, box-and-whisker plots, 

and histograms.  Thus, to ensure a relationship existed between the variables, similar 

methods were employed in this research effort, which provided visual proof of those 

relationships and highlighted erroneous data points. 
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Scatter Plots 

The use of scatter plots was beneficial in visually determining the relationship 

between two variables.  Scatter plots were created to check the relationship between the 

dependent variable, KBTU/SF, and the various independent variables (HDD, CDD, WS, 

and RH).  An additional variable was added, which was the sum of the HDDs and CDDs, 

to further investigate the relationship between degree-days and energy consumption.  

Figures 4-1, 4-2, 4-3, 4-4, and 4-5 display the relationships between the dependent 

variable and the respective independent variables.  Figure 4-1 clearly indicates that as the 

number of HDDs increases, the KBTU/SF increases.  In Figure 4-2, with CDD as the 

independent variable, it appears that as CDD increases, the KBTU/SF slightly decreases.  

In Figure 4-3, the sum of the HDDs and CDDs was plotted against KBTU/SF to 

determine which of the two variables had the greatest influence over the dependent 

variable.  The plot indicates that HDD provides more influence on KBTU/SF than does 

CDD and mirrored the relationship shown in Figure 4-1.  Figure 4-4 denotes a very slight 

increase in KBTU/SF with an increase in wind speed.  Finally, Figure 4-5 shows a very 

slight decrease in KBTU/SF with an increase in relative humidity.  These five scatter 

plots provided insight into the potential influence each independent variable had on the 

dependent variable; they also displayed possible outlier data points. 
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Figure 4-1.  Scatter plot of KBTU/SF vs. HDD 
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Figure 4-2.  Scatter plot of KBTU/SF vs. CDD 
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Figure 4-3.  Scatter plot of KBTU/SF vs. HDD + CDD 
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Figure 4-5.  Scatter plot of KBTU/SF vs. RH 
 

Box-and-whisker Plot 

Box-and-whisker plots, according to McClave et al. (2005), are useful in detecting 

outliers.  The box-and-whisker plot was also beneficial in revealing seasonal trends in the 

data.  Box-and-whisker plots display data in quartile fashion, in which the middle, or 50 

percent, range falls within the box and the remainder inside the whiskers (McClave et al., 

2005).  Values that fall beyond the whiskers are potential outliers.  For normally 

distributed data, less than one percent of the values are expected to fall beyond the 

whiskers.  Figure 4-6 is a box-and-whisker plot that identifies the monthly KBTU/SF 

values over a five-year period, from January 2001 to December 2005.  As noted in the 

figure, several outliers exist in the data and a seasonal trend is witnessed throughout the 

five-year period, with KBTU/SF peaks occurring in the winter months and low points 
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seen in the summer months.  Since the data shows a seasonality trend when using 

monthly data, a supporting argument is provided to use annual versus monthly data to 

account for the trend and to produce a better model.  Using an annual approach might 

reduce the seasonal fluctuations observed throughout the year. 
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Figure 4-6.  Box-and-whisker Plot of Scatter plot of KBTU/SF 
 

 

 

B
ox

 a
nd

 W
hi

sk
er

 P
lo

t f
or

 K
B

T
U

/S
F 

vs
 2

00
1 

- 2
00

5

2
4

6
8

10
12

14
16

18
20

22
24

26
28

30
32

34
36

38
40

42
44

46
48

50
52

54
56

58

60
 M

on
th

s f
ro

m
 2

00
1 

to
 2

00
5

0.
0

25
.0

50
.0

75
.0

KBTU/SF Total

A

AA

AA

A

A A

AAA

AA

A

A

A A

AAA

AA

A AA

AA

A A

A

A A AA A

A AA A A

A AAA AA

A AA

A A

AA
A A

A A A

A A AA

A A

AA

A AA

A A

AA A

A AA A

A A

A A AA

A A

A A A

A A

A A

A A

AA

AA

AA A AA

AA A A A

AA AA A
AA A A

A AA

AA A

A A A

A A

A
A

A A A

A A

AA AA

AAA A

AA A

A AAA

AA A

AA

A A

S

S

S

S S

S SS

S

S

S S

S S

S SSS

S SS

SSS

S S

S SS

S SSS

S S S

S SSS

S SS SS

S S SS

S SSS SS

S SS SSS

S SS

S S

S S

S SS

S S

S SS

S SS

S SS SS

S SS SS

S SS S SS

S S S SS

S SS SSS

S SSS

SS

SS

S SS

S SS

S SS

S SS S

S SS SS

S S S SS

S S S SS

S S S SS

S SS SSS

S S SS

S S

S SSS

S SS

S SSS

S SSS

S SS

S S S SS

S SS S SS

S S S S SS

S S S S SS

S SS SSSS

S SSS

S SS

S S

54 



 

Histograms 

Histograms are commonly used to display the frequencies of data that fall in 

established class intervals (McClave et al., 2005).  A histogram of the dependent variable 

was created to investigate the distribution of the data and visually inspect for outliers.  

Figure 4-7 shows the data is skewed right, indicating the existence of outliers.  This 

further confirms the existence of possible erroneous data points, as seen in the scatter 

plots and box-and-whisker plots.   
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Figure 4-7.  Histogram of KBTU/SF 
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Data Analysis 

Initially, the data set was composed of monthly observations over the 22 fiscal 

year period involving 80 Air Force bases.  This provided 21,120 observations for each 

variable.  After reviewing Figure 4-6 and identifying the seasonality effect, the monthly 

data were aggregated to create annual data; this step minimized the seasonality effects.  

The creation of annual data reduced the observations from 21,120 to 1,740 for each 

variable.  Tests were then conducted to identify outliers within the data.   

As shown in the earlier scatter plots and box-and-whisker plots, numerous outliers 

were present.  Outliers primarily consisted of installations that had extreme values of 

energy consumption per square foot over the entire time period observed.  These outliers 

were analyzed for possible removal from the data.  Four separate tests were conducted to 

detect outliers.  First, a box-and-whisker plot of KBTU/SF was created using the annual 

data to display installations that experienced significantly high energy consumption rates 

per square footage.  Figure 4-8 shows this box-and-whisker plot.  As discussed in the 

box-and-whisker plot section above, data points that fall outside of the whiskers are 

considered outliers.  The circle (o) denotes outliers while the asterisk (*) denotes extreme 

outliers.  SPSS 15.0 for Windows calculated these outliers and extreme outliers by 

applying the following criteria:  if the value of the data was smaller (or larger) than 1.5 

box-lengths from the lower fourth (upper fourth), it was classified as an outlier and if the 

value of the data was smaller (or larger) than 3.0 box-lengths from the lower fourth 

(upper fourth), it was classified as an extreme outlier.  The box-length was defined as the 

interquartile range.  The upper fourth represents the top of the box while the lower fourth 
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represents the bottom of the box.  The area between the upper and lower fourths is the 

interquartile range.  Installations experiencing outlier or extreme outlier data points were 

Arnold, Cheyenne Mountain, Eielson, Elmendorf, Hanscom, Moron, New Boston, and 

Thule.  These installations were not immediately deleted from the analysis based on this 

test alone.     
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Figure 4-8.  Box-and-whisker Plot of Annual KBTU/SF 
 

 

The next three tests involved the use of descriptive statistics, primarily the mean 

and standard deviation.  For these tests, the KBTU/SF value was evaluated using HDD, 
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CDD, and summed HDD and CDD values.  These tests created three additional measures 

to determine installation energy intensity levels.  The means and standard deviations of 

each of the three tests were calculated and used to evaluate for potential outliers.  Using a 

+/- 2.5 standard deviation factor, several installations were again identified as having 

outlier data points.  The selected standard deviation factor (+/- 2.5) ensured that 

approximately 99 percent of the data fell within the data range.  Thus, if the data point 

exceeded the +/- 2.5 factor, it represented one percent of the data range and was classified 

as an outlier.  Installations with values that exceeded the +/- 2.5 standard deviation factor 

were Arnold, Cape Canaveral, Cheyenne Mountain, Hanscom, Lajes, and New Boston. 

The box-and-whisker plot provided an initial observation of the installation’s 

energy consumption without regard to any weather parameters.  By including HDD, 

CDD, and summed HDD and CDD values, it provided a more robust evaluation tool to 

detect outliers.  Installations, such as Eielson, Elmendorf, and Thule, which experience 

cold climates and high HDD values, would have been eliminated from the sample size 

based solely on their energy consumption per square foot values.  This would have 

unnecessarily reduced the sample size without further refinement of the data.  The next 

three series of tests exposed two additional installations that experienced significantly 

high levels of energy consumption per square footage when weather parameters were 

applied.  Based on these four tests, the following installations were excluded from the 

sample:  Arnold, Cape Canaveral, Cheyenne Mountain, Hanscom, Lajes, and New 

Boston.  By excluding these six installations, the observations were reduced to 1,626 data 

points for each variable, covering 74 Air Force installations.  In order to effectively test 
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the predictive capabilities of the model, data pertaining to fiscal year 2006 will be 

reserved and not used in the creation of the regression model.  Thus, the total number of 

data points was reduced to 1,552.  

Regression Model 

Based on the preliminary quantitative and qualitative variables identified for this 

research, the initial response function for the regression model was: 

1 2 3 4 1 3 1 4 2 3 2 4 1 2iY X X X X X X X X X X X X X X0 1 2 3 4 5 6 7 8 9= β + β + β + β + β + β + β + β + β + β +  
  3 4 5 6 7 8 9 10 11 12X X X X X X X X X X10 11 12 13 14 15 16 17 18β + β + β + β + β + β + β + β + β +

 13 14 15 16 17X X X X19 20 21 22 23β + β + β + β + β X  (6)  

 
where  Yi = energy consumption (KBTU/SF) dependent variable 
 X1 = Heating Degree-days (HDD) 

X2 = Cooling Degree-days (CDD) 
X3 = Wind Speed (WS) 
X4 = Relative Humidity (RH) 
X5 = {1 if AETC, 0 otherwise} 
X6 = {1 if AFMC, 0 otherwise} 
X7 = {1 if AMC, 0 otherwise} 
X8 = {1 if PACAF, 0 otherwise} 
X9 = {1 if AFSPC, 0 otherwise} 
X10 = {1 if USAFE, 0 otherwise} 
X11 = {1 if Climate Zone 2, 0 otherwise} 
X12 = {1 if Climate Zone 3, 0 otherwise} 
X13 = {1 if Climate Zone 4, 0 otherwise} 
X14 = {1 if Climate Zone 5, 0 otherwise} 
X15 = {1 if Non-Combat Flying, 0 otherwise} 
X16 = {1 if Support, 0 otherwise} 
X17 = {1 if Strategic/ISR, 0 otherwise} 
β0, β1, ... βp-1 = coefficients or parameters 

This initial model was iteratively tested in an attempt to produce the most accurate energy 

consumption model for Air Force installations. 
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 Based upon the empirical evidence provided in Chapter II and selected qualitative 

categorical measures, the variables listed in Table 4-1 were initially included in the 

overall model, excluding the base case qualitative variables (ACC, Climate Zone 1, and 

Combat Flying).  Multiple linear regression analysis accomplished using SPSS 15.0 for 

Windows predictive analysis software.  One specific form of linear regression, known as 

stepwise regression, was used to analyze the data.  Stepwise regression systematically 

removes independent variables that are not statistically significant, leaving a model that 

represents only those independent variables that are statistically significant to the 

dependent variable.   
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Table 4-1.  Regression Independent Variables 
 

Independent Variables Categories or Measure By 

Heating Degree-days (HDD) Number of HDDs per month/year 

Cooling Degree-days (CDD) Number of CDDs per month/year 

Wind Speed (WS) Average WS per month/year 

Relative Humidity (RH) Average RH per month/year 

Interaction variable of HDD * WS Product of HDD and WS 

Interaction variable of HDD * RH Product of HDD and RH 

Interaction variable of CDD * WS Product of CDD and WS 

Interaction variable of CDD * RH Product of CDD and RH 

Interaction variable of HDD * CDD Product of HDD and CDD 

Interaction variable of WS * RH Product of WS and RH 

Major Command (MAJCOM) ACC, AETC, AFMC, AFSPC, AMC, 
PACAF, USAFE 

Climate Zone (CZ) CZ 1, CZ 2, CZ 3, CZ 4, CZ 5 

Base Mission Combat Flying, Non-Combat Flying, 
Support, Strategic/ISR 
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The stepwise regression results of this analysis produced the following model in 

equation form: 

1 2 1 3 637.903 0.032 0.007 39.897 19.288iY X X X X X= + + − 0.001 + − 10X  
 11 12 15 1735.074X X X−38.671 −19.014 − 5.250 + X  (7)   

where  Yi = energy consumption (KBTU/SF) dependent variable 
 X1 = Heating Degree-days (HDD) 

X2 = Cooling Degree-days (CDD) 
X3 = Wind Speed (WS) 
X6 = {1 if AFMC, 0 otherwise} 
X10 = {1 if USAFE, 0 otherwise} 
X11 = {1 if Climate Zone 2, 0 otherwise} 
X12 = {1 if Climate Zone 3, 0 otherwise} 
X15 = {1 if Non-Combat Flying, 0 otherwise} 
X17 = {1 if Strategic/ISR, 0 otherwise} 

  

Table 4-2 displays the results of the model, including the associated coefficients, 

p-values, and variance inflation factors (VIF) for each variable.  As listed in the table, 

each p-value was less than 0.05, indicating that the associated variable was statistically 

significant to the regression model.  Since stepwise regression was used, SPSS 15.0 for 

Windows automatically discarded variables with p-values greater than 0.05.  The 

coefficient and VIF values will be discussed in more detail in the following sections. 

 

 

 

 

 

.   
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Table 4-2.  Model Summary 
 

Variable Coefficient p-value VIF 
Constant 37.903 0.000  

HDD 0.032 0.000 5.117 
CDD 0.007 0.000 2.561 

HDD * WS -0.001 0.000 5.052 
AFMC 39.897 0.000 1.048 
USAFE 19.288 0.000 1.171 

CZ2 -38.671 0.000 1.546 
CZ3 -19.014 0.000 1.329 

Non-Combat Flying -5.250 0.014 1.077 
Strategic/ISR 35.074 0.000 1.350 

 

 

Model Diagnostic Testing 

After creating the regression model, diagnostic testing was performed to assess 

the model for applicability and aptness, as detailed in Chapter II.  As addressed in the 

previous chapter, assumptions regarding the random error term must be verified.  First, 

Figure 4-9 verifies the assumption that the mean of the probability distribution of the 

error term is zero.  This graph displays a scatter plot of residuals and predicted values.  

Since the data appear randomly distributed around the zero residual line without a 

discernable pattern, the scatter plot indicates a mean of zero.  This plot validates the first 

assumption. 
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Figure 4-9.  Scatter Plot of Residuals and Predicted Values of Energy Consumption 

 

 

The second assumption checked was whether the variance of the probability 

distribution is constant.  Figure 4-10 is a scatter plot of residuals versus standardized 

predicted values in which the data points are relatively evenly and somewhat randomly 

positioned above and below zero.  This visually indicates that there are no problems with 

constant variance of the error terms.   Again, the random distribution clustered around the 

residual zero line indicates validation of a constant variance.  Thus, the second 

assumption is verified.     
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Figure 4-10.  Scatter Plot of Studentized Residuals versus Standardized Predicted Value 

 

 

Next, Figures 4-11 and 4-12 verified the assumption that the distribution of the 

error term is normal.  Figure 4-11 displays a histogram of the standardized residual and 

the shape of the histogram closely follows the normal curve, thus satisfying the 

assumption.  Figure 4-12 displays the normal probability plot of the regression 

standardized residual.  The data closely follows the line, thus reconfirming the normality 

of the error terms. 
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Figure 4-11.  Histogram of Standardized Residuals 
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Figure 4-12.  Normal P-P Plot of Regression Standardized Residual 
 

 

In addition to the above tests for normal distribution and constant variance, the 

correlation or independence of the random error terms was investigated.  In time series 

data analysis such as conducted in this thesis effort, error terms are commonly positively 

correlated.  This autocorrelation is typically caused by the omission of one or many key 

independent variables, which forces the error terms to include the missing variable effects 

seen in the model (Kutner et al., 2004).  SPSS 15.0 for Windows calculated a Durbin-
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Watson statistic value of 0.532.  Since this value is less than 2, indications reflect positive 

autocorrelation is present.  Thus, the variance in the error terms may be understated, the 

true standard deviation of the estimated regression coefficient may be understated, and 

confidence intervals and tests using the t- and F distributions may not be strictly 

applicable (Kutner et al., 2004).  The presence of positive autocorrelation could create 

misleading results.  The two principle techniques for correcting for autocorrelation are to 

add one or more predictor variables to the model or to use transformed variables; 

however, neither technique was used in this research effort.   

After verifying the assumptions of the random error term, two analyses were 

conducted to investigate for statistical outliers and influential data points.  Standardized 

residual data was analyzed, which resulted in 1.5 percent of the residuals occurring 

beyond three standard deviations.  Each of the outlier data points were analyzed, but were 

kept in the data set since their values were very close to three standard deviations.  A 

check for influential data points was also conducted.  The Cook’s distance measure 

produced results that ranged between 0.000 and 0.141.  The maximum value of 0.141 was 

not significantly large, so no influential data points were detected. 

The next step in model validation included testing for the existence of 

multicollinearity.  SPSS 15.0 for Windows calculated variance inflation factors (VIF) 

ranging from 1.077 to 5.117 for the independent variables as shown in Table 4-2.  Since 

no VIF values were greater than ten, multicollinearity was not present; thus, each 

regression coefficient was stable, indicating the independent variables correlate with the 

dependent variable and not with each other.   
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The remaining statistical test was the analysis of the adjusted multiple coefficient 

of determination, R2, value.  The R2 value for the final model was 0.814, which indicated 

a good fit.  This means that when every independent variable was considered, the model 

explains 81.4 percent of the variability in the data.  The p-values displayed in Table 4-2 

indicate that the independent variables were all statistically significant since each value is 

less than 0.05.  The constant regression coefficient, β0, corresponds to the non-climatic 

sensitivity load.  When climate-related variables are not impacting energy consumption, 

the base electrical load, such as lighting or appliance support, is represented by β0.  In this 

model, 37.903 KBTU/SF was the estimated non-climatic energy consumption per square 

foot load.  During the stepwise regression process, several of the independent variables 

were automatically discarded through its iterations in developing the best model.  The 

following independent variables remained in the model:  HDD, CDD, HDD * WS, 

AFMC, USAFE, Climate Zone 2, Climate Zone 3, Non-Combat Flying mission, and 

Strategic/ISR mission.  Thus, WS, RH, HDD * RH, CDD * WS, CDD * RH, HDD * 

CDD, and WS * RH were all deemed not statistically significant.  Therefore, the only 

influential weather parameters proved to be heating degree-days, cooling degree-days, 

and wind speed.  Relative humidity was determined to be not statistically significant.  

These results compare favorably to existing research.  Additionally, AETC, AMC, 

PACAF, and AFSPC were not significant, which implies that energy consumption per 

square foot in these major commands was similar to that of ACC, the base case.  

Similarly, Climate Zone 4 and Climate Zone 5 were not significant, which implies that 

energy consumption per square foot in these climate zones was similar to that of Climate 
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Zone 1, the base case.  Finally, the Support mission was not significant, implying its 

energy consumption per square foot was similar to the Combat Flying mission.  All the 

remaining dummy variables included in the model were significant and had either 

negative or positive coefficients, which showed its tendency towards energy consumption 

per square foot when compared to its respective base case.  For example, Climate Zones 

2 and 3 both had negative coefficients.  This showed that less energy per square foot was 

consumed in these two climate zones than in Climate Zone 1. 

The ultimate test for the final regression model was analyzing its ability to predict 

energy consumption.  Recall that one fiscal year’s worth of data (2006) was set aside for 

final testing of the model.  Determining the percentage difference between the actual and 

predicted values provided a measure of the model’s performance.  Overall, the percentage 

difference average was 20.14 percent with a range of 0.61 to 62.05 percent.  Of the 76 

installations, 23 percent had a percentage differential of less than 10 percent.  Of those 

installations with a differential of less than 10 percent, 58 percent were from Climate 

Zone 5.  Most surprisingly, of the 16 installations with a percentage differential in excess 

of 30 percent, 81.3 percent were of the Combat Flying mission category.  Additionally, 

three of the five installations within Climate Zone 1 had percentage differentials in excess 

of 30 percent.   The complete results are provided in Appendix B.  While the overall 

results were less than desirable, the model still can be useful in providing insight to 

energy policy makers regarding the significant influence weather conditions have on 

energy consumption. 
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Trend Analysis Results 

Graphical methods were utilized to determine which months were best and worst 

in terms of energy consumption.  Monthly data, shown in Figure 4-13, were plotted 

through the period of October 1985 to September 2006 to determine whether trending can 

be predicted.  As the graph depicts, the greatest expenditure of energy occurred in 

January, while the least expenditure occurred in June (closely followed by September).  

These results were expected in that May/June and September/October are traditionally 

transition months in which installations are shifting between heating and cooling 

demands.  Commonly, the heating and cooling loads are minimal during this transitional 

period when the outside air temperature is the closest to the base or reference 

temperature, Tb, as discussed in Chapter II.  Figure 4-14 provides supporting evidence of 

this conjecture as May/June and September/October have the lowest mean totals of HDD 

and CDD of any other months.  Of particular note, the results clearly showed a significant 

difference in energy consumption between the winter and summer months.  This 

discovery could lead to potentially drastic changes in current energy conservation efforts, 

providing support to focus efforts on heating system improvements versus cooling system 

initiatives. 
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Figure 4-13.  1985 to 2006 Mean KBTU/SF Values 
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Figure 4-14.  1985 to 2006 Mean HDD + CDD Values 
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Graphical methods were again utilized to determine which energy source 

(electricity, natural gas, or other) varied the most between winter and summer months.  

Recall from Chapter II that electricity and natural gas were selected for analysis since 

these two energy sources account for approximately 80 percent of all annual facility 

energy consumed on Air Force installations; thus, gaining insight into energy source 

expenditures throughout the year can assist in developing energy initiative programs.  

Several graphs were produced that display energy source consumption averages for each 

installation.  January and August were selected since natural gas and electricity use were 

greatest in each month, respectively.  To capture the results of the analysis of each month, 

the differential was also plotted.  Figure 4-15 provides a sample of the plots by individual 

base, grouped by climate zone.  Each plot is listed in Appendix C.  Five additional plots 

were created to assess each climate zone’s combined energy use.  Figure 4-16 shows the 

average KBTU/SF per energy source for Climate Zone 1.  All five climate zone plots are 

provided in Appendix D.     
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Figure 4-15.  Energy Source Consumption per Base for Climate Zone 4 
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Figure 4-16.  Energy Source Consumption for Climate Zone 1 
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Both Figures 4-15 and 4-16, supported by the remaining plots in Appendices C 

and D, provided substantial evidence that the natural gas differential far exceeded the 

electricity differential, allowing insight into future energy reduction initiatives.  Of note, 

the “other” energy sources’ differentials exceeded the electricity differential in four of 

five climate zone plots and the natural gas differential in two of five plots.  This was 

expected since the two predominant energy sources comprising the “other” category were 

fuel oil and coal, primarily used during the heating season.  Thus, natural gas and other 

fuel sources used during the heating season create a greater opportunity for energy 

reduction by reducing energy consumption during that time period.  Additionally, 

electricity consumption remained relatively stable during both the heating and cooling 

seasons, especially in the colder climate areas (Climate Zones 1, 2, and 3).  This indicated 

that the majority of the electricity utilized was for non-heating and non-cooling purposes. 

 

Summary 

This chapter provided a summary of the results of analyzing the weather and 

energy consumption data obtained from AFCESA and AFCCC through the use of 

multiple linear regression in an effort to create a useable model to predict energy 

consumption at Air Force installations.  Numerous diagnostic tests were performed to 

assess the applicability of the developed regression model.  Although the resulting model 

revealed evidence of possible positive autocorrelation commonly observed in time series 

data, it still provided proof of the significant influence weather has on energy 

consumption and further supported empirical literature in this endeavor.  Additionally, 
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the variables selected proved to explain 81.4 percent of the variability in energy 

consumption per square foot, as seen in the resulting R2 value of 0.814. 

Insight was also gained into energy consumption trends on Air Force installations.  

Transitional periods involving shifts between heating and cooling seasons commonly 

called for the lowest energy demand throughout the year.  Additionally, natural gas and 

other energy sources used during the heating season varied significantly when compared 

to the corresponding cooling season.  Electricity consumption remained relatively 

constant when supporting cooling and heating seasons.  Through observations made 

regarding these trends, installations can engage in energy conservation efforts that target 

those mechanical systems utilized during peak demand periods.



 

Chapter V.  Discussion and Conclusions 
 

This chapter provides a review of the research questions and a short summary of 

the associated findings.  The key results and implications of this thesis effort are 

addressed, limitations associated with the predictive energy consumption model are 

identified, and recommendations for future uses of the model are provided.  Additionally, 

this chapter provides future research topics that may assist in developing a more robust 

energy model that captures additional variations in energy consumption. 

Discussion of Results 

Three research questions were identified in Chapter I:  (1) What type of variation does 

weather impose on energy consumption at Air Force installations?  (2) Which months are 

best/worst in terms of energy consumption? and (3) Which energy sources vary the 

greatest between the heating and cooling seasons?  The analysis detailed in the preceding 

chapters was intended to address each research objective.  The regression model, along 

with each variable, is discussed in the following paragraphs, along with implications to 

future energy policies based on trending results. 

 

Regression Analysis Results 

The final regression model included nine independent variables (three quantitative 

weather variables and six dummy variables) that proved to have a significant relationship 

with energy consumption at Air Force installations.  Recalling the first research question 

regarding how weather impacts energy consumption, the energy model highlighted the 
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importance of outdoor air temperature (in the form of heating and cooling degree-days) 

and wind speed (in the form of an interaction variable).  According to Mirasgedis et al. 

(2006), “demand forecasts are direct functions of weather and other variables” (p. 221).  

Therefore, any changes in the variables (heating degree-days, cooling degree-days, and 

the interaction variable of heating degree-days and wind speed) affect the energy 

consumption to the degree of their regression coefficient values.  Of the three, heating 

degree-days had the strongest influence on energy consumption, accounting for over 68 

percent of the variation in energy consumption in terms of contribution to the R2 value.  

The interaction variable accounted for 1.4 percent, while cooling degree-days accounted 

for less than 1 percent.  This result reinforces the assertions in existing literature that 

outdoor air temperature has the most impact on energy consumption.  Two conjectures 

can help account for the overwhelming significance of heating degree-days in the 

regression model.  First, as depicted in Figure 4-13 and Figure 4-14, winter months’ 

energy consumption rates and HDD/CDD mean totals far exceed those values observed 

in the summer months.  This indicates that throughout the year, heating requirements 

outweigh cooling requirements, thus increasing its relative influence in predicting energy 

consumption.  Second, temperature variances resulting from daily mean temperatures 

diverging from the reference temperature of 65 degrees Fahrenheit (18.3 degrees Celsius) 

occur more frequently and in greater quantity for heating degree-days than cooling 

degree-days.  Put another way, more heating degree-days are generated since 

temperatures throughout the year, on average, are more frequently below 65 degrees 

Fahrenheit and at greater ranges than cooling degree-days are above 65 degrees 
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Fahrenheit.  In contrast to heating and cooling degree-days, wind speed and relative 

humidity individually were not statistically significant to the model, which was a 

surprising finding since the literature indicated that both weather conditions had proven 

predictive in other studies. 

Of those weather conditions that were statistically significant, the regression 

coefficient was 0.032 for heating degree-days, -0.001 for the interaction variable, and 

0.007 for cooling degree-days.  This means for a one unit increase in heating degree-

days, the energy consumption per square foot increases by 0.032 when all other variables 

are held constant.  The fact that the regression coefficient for heating degree-days is 

positive is not surprising.  As air temperatures drop below the reference temperature of 

65 degrees Fahrenheit and associated heating degree-days begin to accumulate, energy 

consumption increases as heating systems are activated.  For the heating degree-days and 

wind speed interaction variable, its regression coefficient was negative 0.001, which 

indicates that for one unit increase of this variable, energy consumption per square foot 

decreases by 0.001, when all other variables remain constant.  This result was 

unexpected, especially since the heating degree-day component was included in the 

interaction term.  However, since the regression coefficient was so small, the overall 

impact was essentially negligible.  Cooling degree-days have a slightly larger impact on 

energy consumption than the interaction term with a regression coefficient of 0.007.  

Again, this result was expected using the same logic as with heating degree-days.  

Interestingly, though, was the relative magnitude difference of the regression coefficient 

of HDD when compared to the CDD coefficient.  The HDD coefficient was over 4.5 
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times larger than the CDD coefficient, providing further supporting evidence that heating 

degree-days and its associated heating energy load requirement far exceeds that of 

cooling requirements.  Put another way, one unit increase of HDD has over 4.5 times the 

impact on energy consumption than one unit increase of CDD.    

The addition of dummy variables further refined the model and provided a 

mechanism to draw conclusions regarding energy consumption.  Of the qualitative 

variables, several variables within the major command, climate zone, and mission 

categories significantly impacted the energy consumption values for the installations.  As 

previously discussed, ACC, Climate Zone 1, and the Combat Flying mission were the 

base cases for the regression model.  Thus, when interpreting the remaining variables, 

their contributions to the dependent variable are compared to those of the base case 

variables.  For example, the regression coefficient for Climate Zone 2 was -38.671, which 

indicates that installations included in Climate Zone 2 use 38.671 KBTU/SF less energy 

than those installations in Climate Zone 1.  Similarly, installations that are part of AFMC 

use 39.897 KBTU/SF more energy than ACC installations.  Installations within AFMC, 

USAFE, Climate Zone 2, Climate Zone 3, Non-Combat Flying, or Strategic/ISR 

categories each had more or less energy consumption rates when compared to ACC, 

Climate Zone 1, or Combat Flying, respectively, in the amount equivalent to their 

regression coefficients.  Overall, location, in terms of major command and climate, and 

mission categories played varying roles in energy consumption per square footage when 

applied to the final model.   
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The final regression model did not produce expected results in terms of 

categories, however.  For example, the model indicated installations within Climate 

Zones 1, 4, and 5 had similar energy consumption per square foot rates, while 

installations within Climate Zones 2 and 3 used less energy on average when compared to 

the other three.  Since Climate Zone 1 has the greatest heating requirement of all climate 

zones, the expectation was that the remaining four climate zones would each have 

increasing negative regression coefficients, with Climate Zone 5 (smallest heating 

requirement) having the largest negative coefficient.     

Another anomaly is seen in the MAJCOM category.  Only AFMC and USAFE 

returned different energy consumption rates when compared to ACC and the remaining 

MAJCOMs.  An explanation for this difference could be made for installations in 

USAFE, since construction standards utilized in those countries are markedly different 

than those used in the United States and could account for the consumption rate 

variances.  However, using this argument would support varying rates for PACAF 

installations located in Korea, Japan, and Guam as well; yet the PACAF category proved 

to be not statistically significant to the model.  Additionally, AFMC installations are not 

distinctly different in construction standards than other installations located in the United 

States, thus again invalidating this conjecture.   

Regarding the mission category, the results were also mixed.  Non-Combat Flying 

installations were shown to use less energy than Combat Flying installations while 

Strategic/ISR installations proved to use more.  Support installations, however, used 

comparable rates to Combat Flying installations.  Assuming that installations within the 
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Combat Flying category conduct standard operations on weekends and routinely after 

duty hours (before 0800 hours and after 1700 hours), it would be expected that mission 

categories with less working time would expend less energy.  This is confirmed by the 

fact that Non-Combat Flying installations returned a negative regression coefficient.  

However, Support category installations did not conform to this logic.  Additionally, 

Strategic/ISR mission installations used more energy than Combat Flying installations, 

which could be attributed to the significant energy consumption required in round-the-

clock satellite and ICBM monitoring and other specialty missions.   

 

Trend Analysis Results 

Two key insights are provided through the trend analysis conducted to determine 

which months were best/worst in terms of energy consumption and which energy sources 

varied the greatest between the heating and cooling seasons.  First, the winter months use 

the most energy than any other seasonal periods, with January having the highest 

consumption rate.  This fact should be seriously considered by energy managers when 

developing energy initiatives and used for justification for proper allocation of scarce 

financial resources.  Heating system upgrades would provide the greatest opportunities to 

reduce an installation’s energy consumption rate, thus assisting in meeting federal energy 

reduction goals.  Second, natural gas, coal, and fuel oil are the three predominant energy 

sources used to meet the heating demands as shown in Appendix C.  The differentials 

between energy sources and months shown in those graphs indicate that the greatest 

opportunity to reduce energy lies in developing initiatives affecting natural gas, coal, and 
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fuel oil consumption during winter months.  Again, this data is invaluable in developing 

programs to affect the greatest impact on energy reduction. 

Limitations 

Numerous limitations apply to this thesis effort.  First, the energy consumption 

data obtained are only available in monthly increments.  If weekly, hourly, or daily data 

were made available, a more robust model could have been created to address various 

factors, such as weekends, holidays, non-peak daily energy loads, or weekly energy 

fluctuations.  Secondly, the usefulness of the regression model is driven by the accuracy 

of the data involved in its creation.  This thesis effort relied upon the accuracy of the 

information provided by AFCESA (pulled from DUERS) and AFCCC.  The DUERS data 

are manually inputted by installation energy managers, thus subject to human error.  

Attempts were made to correct inaccuracies that were found; however, it is likely that 

inaccurate data impacted the model.  Third, by using time series data, the resulting model 

is subjected to positive autocorrelation.  This could potentially lead to the creation of 

inaccurate regression coefficients.  Fourth, establishment of an overarching energy 

consumption baseline that would represent the entire Air Force usage is difficult to 

determine.  Finally, the scope of this study limits the total variance explained by the 

regression model.  By focusing primarily on weather parameters, other factors such as 

building construction standards, population, or facility age are not addressed. 
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Recommendations 

Despite the fact that the model produced less than desired predictive abilities 

when used to compare fiscal year 2006 data, this research effort still highlights the 

significant influence weather conditions impart on energy consumption.  Air Force 

energy policy makers and base energy managers can use this analysis to develop policies 

and programs that target systems that consume the most energy on Air Force 

installations.  By focusing on initiatives that improve heating systems and its associated 

infrastructure, the greatest gain in energy conservation can be achieved.  Air Force 

energy policy makers can make informed decisions on where energy funds should be 

spent throughout the Air Force, thereby meeting federal energy reduction goals.  Decision 

makers can additionally assess the potential impact of weather anomalies or suspected 

climate changes on energy consumption and adjust current directives or policies to 

compensate for those impacts, such as revising design standards in federal facilities to 

reflect temperature-related energy use. 

Future Research 

Several research avenues exist that could improve upon the results of this thesis.  

First, the DUERS data could be dissected and analyzed in various other methods.  For 

each Air Force installation, energy consumption data is reported separately into two 

categories:  industrial and military family housing.  Since the data is reported in two 

distinct economic sectors (commercial and residential), future research could involve 

creating individual models for each sector.  Especially in today’s environment of 

increasing housing privatization, insight could be gained on the impact of eliminating the 
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residential sector from the overall energy consumption total and how federally mandated 

energy reduction goals are affected.  Future research could answer the question on which 

economic sector is more energy efficient.  In addition to economic sectors, energy 

sources are also reported separately in DUERS.  Future research could entail focusing on 

one energy source and creating a separate prediction model based solely on its 

consumption. 

Secondly, the existing model could be revised to include additional variables, 

such as a baseline non-climatic energy load, an “energy reduction” factor that captures an 

overall annual energy reduction value per year, installation age, mean facility age, or 

various qualitative dummy variables addressing weekends, holidays, or other less energy-

intensive periods.  Adding variables that address improved construction methods or 

periods of inactivity could possibly account for additional variations in energy 

consumption.  Additional research could then be undertaken to determine the progress of 

older bases in attaining federally mandated energy goals. 

Third, the population could be increased to incorporate all Reserve and Guard 

installations for regression analysis, thereby enabling the creation of one overarching Air 

Force model or three separate models.  Analysis and comparison of trends in Reserve and 

Guard installations to active duty bases could present currently unforeseen energy 

reduction opportunities.  By adding additional installations, an intra-state analysis could 

be conducted to determine variances within installations located in the same state. 

Finally, an analysis to compare northern tier versus southern tier bases could be 

accomplished.  As shown in this research effort, bases with traditionally more heating 
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requirements have differing energy requirements than those with more cooling 

requirements.  Regression models could be created to capture this difference to more 

accurately reflect energy consumption rates. 

Conclusion 

This thesis provided an analysis of climate-based variables and their impact on 

energy consumption at Air Force installations.  Since the early 1970s, energy 

consumption has been an increasing concern, in terms of both our nation’s security and 

budget.  Legislation has been passed over the last three decades to encourage energy 

conservation in federal facilities; however, the impact that weather conditions impart on 

those energy reduction efforts continues to be lacking.  Understanding these external 

factors relating to energy use and creating a robust energy model would provide a 

mechanism for leaders to more accurately measure conservation efforts and assist in the 

development of more effective energy reduction programs.  Revelations gained through 

trend analysis provide opportunities for improvements to existing energy programs, all 

focusing on meeting federally mandated energy reduction goals. 
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Appendix A:  Installations and Associated Categories 

BASE MAJCOM 
Climate 

Zone Mission 
Base 
Type 

Altus AFB AETC 5 Non-Combat Flying Major 
Andersen AFB PACAF 5 Support Major 
Andrews AFB AMC 3 Non-Combat Flying Major 
Arnold AFB AFMC 4 Support Major 
Aviano AB USAFE 3 Combat Flying Major 

Barksdale AFB ACC 5 Combat Flying Major 
Beale AFB ACC 4 Combat Flying Major 

Bolling AFB AETC** 3 Support Major 
Cannon AFB ACC 4 Combat Flying Major 

Cape Canaveral AFS AFSPC 5 Strategic/ISR Major 
Charleston AFB AMC 5 Combat Flying Major 

Cheyenne Mountain AS AFSPC 2 Strategic/ISR Minor 
Columbus AFB AETC 5 Non-Combat Flying Major 

Davis-Monthan AFB ACC 5 Combat Flying Major 
Dover AFB AMC 3 Combat Flying Major 
Dyess AFB ACC 5 Combat Flying Major 

Edwards AFB AFMC 4 Support Major 
Eglin AFB AFMC 5 Combat Flying Major 

Eielson AFB PACAF 1 Combat Flying Major 
Ellsworth AFB ACC 2 Combat Flying Major 
Elmendorf AFB PACAF 1 Combat Flying Major 
Fairchild AFB AMC 2 Combat Flying Major 
Falcon AFB AFSPC 2 Strategic/ISR Major 

FE Warren AFB AFSPC 2 Strategic/ISR Major 
Grand Forks AFB AMC 1 Combat Flying Major 

Hanscom AFB AFMC 3 Support Major 
Hickam AFB PACAF 5 Support Major 

Hill AFB AFMC 2 Combat Flying Major 
Holloman AFB ACC 4 Combat Flying Major 
Hurlburt Field ACC* 5 Combat Flying Major 

Incirlik AB USAFE 5 Support Major 
Kadena AB PACAF 5 Combat Flying Major 

Keesler AFB AETC 5 Support Major 
Kirtland AFB AFMC 4 Combat Flying Major 
Kunsan AB PACAF 3 Combat Flying Major 

Lackland AFB AETC 5 Support Major 
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BASE MAJCOM 
Climate 

Zone Mission 
Base 
Type 

Lajes Field USAFE 4 Support Major 
Lakenheath AB USAFE 3 Combat Flying Major 
Langley AFB ACC 4 Combat Flying Major 
Laughlin AFB AETC 5 Non-Combat Flying Major 

Little Rock AFB AETC 5 Non-Combat Flying Major 
Los Angeles AFB AFSPC 4 Support Major 

Luke AFB AETC 5 Non-Combat Flying Major 
MacDill AFB AMC 5 Combat Flying Major 

Malmstrom AFB AFSPC 2 Strategic/ISR Major 
Maxwell AFB AETC 5 Support Major 
McChord AFB AMC 3 Combat Flying Major 

McConnell AFB AMC 3 Combat Flying Major 
McGuire AFB AMC 3 Combat Flying Major 
Mildenhall AB USAFE 3 Combat Flying Major 

Minot AFB ACC 1 Combat Flying Major 
Misawa AB PACAF 2 Combat Flying Major 
Moody AFB ACC* 5 Combat Flying Major 
Moron AB USAFE 4 Combat Flying Minor 

Mountain Home AFB ACC 3 Combat Flying Major 
Nellis AFB ACC 5 Combat Flying Major 

New Boston AFS AFSPC 2 Strategic/ISR Minor 
Offutt AFB ACC 2 Non-Combat Flying Major 
Osan AB PACAF 3 Combat Flying Major 

Patrick AFB AFSPC 5 Strategic/ISR Major 
Peterson AFB AFSPC 2 Strategic/ISR Major 

Pope AFB AMC 4 Combat Flying Major 
Ramstein AB USAFE 2 Non-Combat Flying Major 

Randolph AFB AETC 5 Non-Combat Flying Major 
Robins AFB AFMC 5 Non-Combat Flying Major 
Scott AFB AMC 3 Non-Combat Flying Major 

Seymour Johnson AFB ACC 5 Combat Flying Major 
Shaw AFB ACC 5 Combat Flying Major 

Sheppard AFB AETC 5 Non-Combat Flying Major 
Spangdahlem AB USAFE 2 Combat Flying Major 

Thule AB AFSPC 1 Strategic/ISR Minor 
Tinker AFB AFMC 4 Combat Flying Major 
Travis AFB AMC 4 Combat Flying Major 

Tyndall AFB AETC 5 Non-Combat Flying Major 
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BASE MAJCOM 
Climate 

Zone Mission 
Base 
Type 

United States Air Force 
Academy AETC*** 2 Support Major 

Vance AFB AETC 5 Non-Combat Flying Major 
Vandenberg AFB AFSPC 4 Strategic/ISR Major 
Whiteman AFB ACC 3 Combat Flying Major 

Wright Patterson AFB AFMC 3 Support Major 
Yokota AB PACAF 4 Non-Combat Flying Major 

       
* - Hurlburt and Moody are AFSOC bases, but recoded to ACC bases due to similar missions.
** - Bolling is an AFDW base, but recoded to AETC due to similar mission.   
*** - United States Air Force Academy is a Direct Reporting Unit, but recoded to 
AETC due to similar mission.   
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Appendix B:  Comparison of Actual Energy Consumption versus Model Prediction 

BASE 
Actual 

KBTU/SF 
Model 

KBTU/SF 
Percent  

Difference 
Altus AFB 85.12 116.22 26.76 

Andersen AFB 71.27 81.28 12.31 
Andrews AFB 80.81 116.05 30.37 

Aviano AB 71.65 98.68 27.39 
Barksdale AFB 85.79 102.33 16.17 

Beale AFB 87.44 107.82 18.91 
Bolling AFB 124.01 119.74 3.56 
Cannon AFB 99.10 122.12 18.85 

Charleston AFB 95.37 98.13 2.82 
Columbus AFB 86.06 114.04 24.54 

Davis-Monthan AFB 79.43 90.40 12.13 
Dover AFB 162.39 121.60 33.54 
Dyess AFB 102.89 101.87 1.00 

Edwards AFB 118.76 160.68 26.09 
Eglin AFB 106.33 131.42 19.09 

Eielson AFB 359.86 428.84 16.09 
Ellsworth AFB 101.57 139.83 27.37 
Elmendorf AFB 120.36 317.16 62.05 
Fairchild AFB 110.80 162.24 31.70 
Falcon AFB 219.83 169.16 29.96 

FE Warren AFB 138.04 172.06 19.77 
Grand Forks AFB 144.32 237.19 39.15 

Hickam AFB 59.19 69.33 14.63 
Hill AFB 177.68 184.89 3.90 

Holloman AFB 86.57 112.84 23.28 
Hurlburt Field 99.23 89.84 10.46 

Incirlik AB 62.17 83.98 25.97 
Kadena AB 62.24 71.25 12.66 

Keesler AFB 77.84 89.82 13.34 
Kirtland AFB 100.18 172.01 41.76 
Kunsan AB 104.45 148.97 29.89 

Lackland AFB 83.58 87.54 4.52 
Lakenheath AB 101.29 84.05 20.51 
Langley AFB 107.01 123.10 13.07 
Laughlin AFB 75.77 84.62 10.45 
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BASE 
Actual 

KBTU/SF 
Model 

KBTU/SF 
Percent 

Difference 
Little Rock AFB 94.01 117.77 20.17 
Los Angeles AFB 69.99 73.06 4.20 

Luke AFB 72.14 87.41 17.46 
MacDill AFB 98.48 74.85 31.56 

Malmstrom AFB 132.81 170.46 22.09 
Maxwell AFB 109.68 105.33 4.13 
McChord AFB 117.36 147.98 20.69 

McConnell AFB 85.52 116.86 26.82 
McGuire AFB 148.71 137.70 8.00 
Mildenhall AB 109.64 121.53 9.79 

Minot AFB 139.24 212.93 34.61 
Misawa AB 159.50 140.50 13.52 
Moody AFB 99.06 93.61 5.82 
Moron AB 52.59 79.84 34.13 

Mountain Home AFB 111.12 159.53 30.35 
Nellis AFB 96.35 111.72 13.76 
Offutt AFB 144.75 130.36 11.04 
Osan AB 111.33 177.55 37.30 

Patrick AFB 61.39 107.67 42.99 
Peterson AFB 157.10 169.16 7.13 

Pope AFB 81.57 124.97 34.73 
Ramstein AB 68.22 135.02 49.47 

Randolph AFB 84.16 83.66 0.61 
Robins AFB 125.95 143.84 12.44 
Scott AFB 113.75 130.70 12.97 

Seymour Johnson AFB 79.90 119.04 32.88 
Shaw AFB 79.11 111.27 28.91 

Sheppard AFB 82.29 98.77 16.69 
Spangdahlem AB 66.75 128.74 48.15 

Thule AB 448.99 541.18 17.04 
Tinker AFB 194.34 157.91 23.07 
Travis AFB 71.86 100.02 28.15 

Tyndall AFB 85.26 80.62 5.76 
United States Air Force 

Academy 117.56 145.12 18.99 
Vance AFB 92.32 120.43 23.34 

Vandenberg AFB 175.00 138.61 26.25 
Whiteman AFB 158.02 126.15 25.26 
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BASE 
Actual 

KBTU/SF 
Model 

KBTU/SF 
Percent 

Difference 
Wright Patterson AFB 184.86 193.72 4.57 

Yokota AB 148.52 143.85 3.25 
Overall Results   20.14 
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Appendix C:  Energy Source Plots for Each Climate Zone and Installation 
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Appendix D:  Energy Source Plots for Each Climate Zone  
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